10.04.2019

Возможные последствия аварий радиационно-опасных объектов, особенности радиоактивного загрязнения при авариях на радиационно-опасных объектах. Аварии на радиационно-опасных объектах


В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.

Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.

Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют именно радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется:

во-первых, природной радиоактивностью, включая космические излучения;

во-вторых, радиоактивным фоном обусловленным проведенными испытаниями ядерного оружия (с 1945 по 1991 г. не менее 1900 испытаний) ;

в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики;

в-четвертых, эксплуатацией радиационно-опасных объектов.

Радиационно-опасный объект (РОО) - объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов экономики, а также окружающей природной среды.

К типовым РОО относятся:

Атомные станции;

Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;

Предприятия по изготовлению ядерного топлива;

НИИ и проектные организации, имеющие ядерные установки и стенды;

Транспортные ядерные энергетические установки;

Военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ, которое может поступить в окружающую среду в результате аварии.

В Российской Федерации имеются около 250 судов с ядерными энергетическими установками. В пунктах отстоя в ожидании утилизации находятся 185 атомных подводных лодок, причем, 120 из них с 200 ядерными реакторами стоят с не выгруженным ядерным топливом. Кроме того, 70% АПЛ стратегического назначения нуждаются в ремонте, 50% технически и морально устарели, будут выведены из строя к 2015 году. Из оставшихся 75% будут потеряны из-за окончания гарантийного срока корабельных комплексов.

Потенциальную радиационную угрозу представляют 30 НИИ со 113 исследовательскими ядерными установками. 50 таких реакторов находятся в Московской области, а 9 из них непосредственно в Москве.

К радиационно-опасным объектам относятся и 16 региональных спецкомбинатов «Радон» по переработке, транспортировке и захоронению отходов. Пункты захоронения радиоактивных отходов (ПЗРО) специальных комбинатов «Радон» расположены рядом с городами Москва, Санкт-Петербург, Волгоград, Нижний Новгород, Грозный, Иркутск, Казань, Самара, Мурманск, Новосибирск, Ростов-на-Дону, Саратов, Екатеринбург, Благовещенск республики Башкортостан, Челябинск и Хабаровск.

Особое место среди РОО занимают атомные электростанции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (ACT) и атомные станции промышленного теплоснабжения (АСПТ).

Атомные станции теплоснабжения существуют только в России (3 станции). Лидером по выработке электроэнергии атомными электростанциями являются США (836,63млрд кВт·ч/год), Франция (436 млрд. кВт.ч/год).

В Российской Федерации работают 10 атомных электростанций (в их числе Ростовская АЭС), которые производят около 160 млрд. кВт.ч/год.

Преимуществами атомных электростанций перед тепловыми являются их экологическая чистота, практическая независимость от источников топлива (цикл зарядки - 3 года), более низкая себестоимость производимой электроэнергии.

Главными недостатками АЭС, по мнению специалистов, являются:

тяжелые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии;

высокая стоимость утилизации ядерных отходов, появляющихся в результате эксплуатации АЭС, а также утилизация самих АЭС после окончания срока эксплуатации. Основным и наиболее опасным элементом атомных станций является ядерный реактор. На атомных электростанциях наиболее широко распространены корпусные водо-водяные энергетические реакторы ВВЭР (теплоноситель и замедлитель нейтронов - вода) и водографитные реакторы канального типа РБМК - реактор большой мощности, канальный (теплоноситель- вода, замедлитель- графит).

В активной зоне реактора, где размещены тепловыделяющие элементы (ТВЭЛ), происходит реакция деления ядер урана-235. В результате торможения осколков деления их кинетическая энергия преобразуется в тепловую и нагревает реактор.

Во время реакции в ТВЭЛ накапливаются радиоактивные продукты ядерного деления. Их качественный состав примерно тот же, что и осколков деления при взрывах ядерных боеприпасов, но количество радионуклидов по периоду полураспада существенно отличается.

Процесс деления в ТВЭЛ длится несколько лет, поскольку загрузка реакторов ядерным горючим осуществляется, как правило, не чаще одного раза в три года. За этот срок короткоживущие изотопы распадаются. Одновременно идет накопление радионуклидов с большим периодом полураспада (стронций Sr-90, цезий Cs-137, а также плутоний Ри-239 (-240,-241,-242).

В ходе трехгодичного периода эксплуатации реактора процентное содержание долгоживущих радионуклидов (стронций - 90, цезий -137, плутоний -239 (-240, -241, -242) в продуктах ядерного деления увеличивается. В случае радиационной аварии долгоживущие радионуклиды создают устойчивое радиоактивное загрязнение местности. Несмотря на принимаемые технические и организационные меры, полностью избежать аварий на радиационно-опасных объектах, и прежде всего на АЭС, пока не удается.

Эксплуатация радиационно-опасных объектов неизбежно сопровождается появлением потенциальных опасностей как для обслуживающего эти объекты персонала, так и для населения и окружающей природной среды. Реализация этих опасностей осуществляется при возникновении радиационных аварий на объекте.

Радиационная авария (РА) - авария на радиационно-опасном объекте, приводящая к выходу или выбросу радиоактивных веществ или ионизирующих излучений за границы объекта.

Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия. Тем не менее, особенность расположения АЭС (в густонаселенных районах), количество имеющихся на них ядерного топлива и ядерных отходов предопределяют особую актуальность рассмотрения радиационных аварий именно на АЭС.

Аварии на атомных станциях подразделяются на проектные и запроектные (гипотетические). Система технической безопасности АЭС, как правило, обеспечивает локализацию максимальной проектной аварии (МПА), но не позволяет избежать гипотетических аварий. Об этом свидетельствуют данные МАГАТЭ.

Радиационные аварии на РОО подразделяются на три типа:

Локальная - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.

Местная - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно - защитной зоны и количествах, превышающих установленные нормы для данного предприятия.

Общая - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно - защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

Отметим, что ядерного взрыва при авариях на АЭС не может быть в принципе, а ударная волна, образующаяся при тепловом взрыве реактора, распространяется на незначительные расстояния и представляет опасность только для обслуживающего станцию персонала и конструкций объектов АЭС.

Основным поражающим фактором (опасностью) при авариях на реакторах АЭС, как и других РОО (кроме арсеналов для хранения ядерных боеприпасов), является радиоактивное загрязнение местности.

Источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ.

Хотя количество радионуклидов в активной зоне реактора велико, реальную опасность при аварии представляют только выброшенные из реактора радионуклиды. Доля выброса радионуклидов зависит от многих факторов, включая конструкцию реактора, состояние активной зоны, историю аварийного процесса и многое другое.

Поскольку период полураспада основных продуктов деления, вызывающих радиоактивное загрязнение внешней среды сравнительно велик (исключение составляет йод -131), такого резкого уменьшения мощности дозы, как это имеет место на следе ядерного взрыва, не наблюдается, т.е. спад уровней радиации на местности более медленный, чем после ядерного взрыва.

При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Воздействие радиоактивного загрязнения окружающей среды на людей в первые часы и сутки после аварии определяется внутренним облучением в результате вдыхания радионуклидов из облака и внешним облучением от радиоактивного облака и радиоактивных выпадений на местности, а также поверхностным загрязнением в результате осаждения радионуклидов из облака выброса. В последующем, в течение многих лет, вредное воздействие и накопление дозы облучения у людей будет обусловлено вовлечением в биологическую цепочку выпавших радионуклидов и употреблением загрязненных продуктов питания и воды.

При аварии на Чернобыльской АЭС в 1986 году выброс в атмосферу парообразных или арозольных радионуклидов продолжался в течение 10 суток. Метеорологическая обстановка в этот период характеризовалась неустойчивым ветром как в приземном слое, так и на высоте 700-1500 м. Направление ветра изменялось в пределах 360 градусов, фактически описав круг. Поэтому конфигурация следа имеет очень сложную форму и даже «пятнистый» характер («цезиевые пятна»).

Для характеристики радиоактивного заражения территории, оценки радиационной обстановки и определения мер радиационной защиты при ликвидации последствий при гипотетической, запроектной и др. авариях на АЭС условно на местности выделяют зоны радиоактивного заражения (загрязнения) (РЗ), которые на картах изображают в виде эллипсов умеренного (зона А), сильного (зона Б), опасного (зона В), чрезвычайно опасного (зона Г) и зона радиационной опасности (зона М).

При этом, внешние границы зон PЗ принято характеризовать параметрами: поглощенная доза излучения за 1-ый год; мощность поглощенной дозы излучения за 1 час после аварии, катастрофы. Значения этих радиационных характеристик зон РЗ приведены ниже и отличаются от зон РЗ при ядерном взрыве. Данные зоны РЗ и их характеристики используются при оценке радиационной обстановки методом прогнозирования, т.е. заблаговременно. Реальная же конфигурация следа заражения, определенная при радиационной разведке, будет иметь сложную форму.

После определения границ зон радиоактивного заражения, устанавливают границы территорий, имеющих различную степень опасности для здоровья людей. Они характеризуются возможной дозой облучения.

Зона экстренных мер защиты населения - территория, в пределах которой доза внешнего гамма -облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 75 рад, а доза внутреннего облучения щитовидной железы за счет поступления в организм человека радиоактивного йода - 250 рад.

Таблица 1. Характеристики зон радиоактивного заражения (РЗ) местности при аварии на АЭС

Зона профилактических мероприятий - территория, в пределах которой доза внешнего гамма -облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 25 рад (но не более 75), а доза внутреннего облучения щитовидной железы радиоактивным йодом может превысить 30 рад (но не более 250).

Зона ограничений - территория, в пределах которой доза внешнего облучения населения за время формирования следа радиоактивного загрязнения от выброса РВ при аварии на РОО может превысить 10 рад (но не более 25), а доза внутреннего облучения щитовидной железы радиоактивным йодом не превышает 30 рад.

Зона возможного радиоактивного загрязнения - территория, в пределах которой прогнозируются дозовые нагрузки, превышающие 10 рад в год.

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА).

Зона радиационной аварии - это территория, на которой суммарное внешнее и внутреннее облучение может превышать 5 рад за первый год. В ЗРА проводится мониторинг радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе принципа оптимизации (т.е. выбора наилучшего варианта действий).

На территории, подвергшейся радиоактивному загрязнению, после стабилизации обстановки в районе аварии в период ликвидации ее долговременных последствий для жизни и хозяйственной деятельности населения устанавливаются зоны:

Зона отчуждения. В этой зоне запрещается постоянное проживание населения, ограничивается хозяйственная деятельность и природопользование;

Зона отселения. Это территория за пределами зоны отчуждения, на которой плотность загрязнения почв цезием-137 от 15 до 40 Ки/км 2 или эквивалентных доз других радионуклидов, население подлежит обязательному отселению.

Зона проживания с правом на отселение. Это территория за пределами зоны отчуждения и зоны отселения с плотностью загрязнения почв цезием - 137 от 5 до 15 Ки/км 2, при которой население имеет право на отселение;

Зона проживания с льготным социально-экономическим статусом. Это территория за пределами зоны отчуждения, зоны отселения и зоны проживания с правом на отселение с плотностью радиоактивного загрязнения почвы цезием - 137 от 1 до 5 Ки/км 2 .

Для защиты работающего на АЭС персонала и населения на территории вокруг станции c момента начала ее эксплуатации устанавливаются санитарная зона и зона наблюдения.

Вокруг АЭС создается санитарная зона R= 3 км., которая подразделяется на 3 зоны:

1. Зона строгого режима с предельно допустимой дозой (ПДД) = 5 бэр/год. В ней предусматривается постоянный радиационный контроль в местах работ людей, повседневный радиационный контроль объектов и территории.

2. Зона режима радиационной безопасности с ПДД = 0.5 бэр/год в которой проводится повседневное радиометрическое обследование людей, транспорта и путей их движения после проведения работ.

3. Санитарно - защитная зона. В ней предусматривается систематическое измерение уровней ионизирующих излучений и радиоактивного заражения.

Кроме того, устанавливается зона наблюдения R= 30 км., в которой проводится контроль за радиоактивностью объектов и внешней среды с установленной периодичностью.

Федеральный закон № 3-ФЗ от 09.01.1996 «О радиационной безопасности населения» устанавливает государственное нормирование в сфере обеспечения радиационной безопасности. Статья 9 определяет пределы дозовых нагрузок для населения и персонала, причем более жесткие, чем ранее действующие. Эти нормы периодически пересматриваются в сторону ужесточения и с сентября 2009 года Постановлением Роспотребнадзора (Главного санитарного врача России) от 7 июля 2009 года № 47 введены «Нормы радиационной безопасности НРБ-99/2009».

Эти нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:

Облучения персонала и населения в условиях нормальной эксплуатации техногенных источников ионизирующего излучения (ИИИ);

Облучение населения и персонала в условиях радиационной аварии;

Облучение работников промышленных предприятий и населения всеми природными ИИИ;

Медицинское облучение населения.

Важнейшим условием сохранения работоспособности и здоровья населения является соблюдение принципа непревышения допустимых пределов индивидуальных доз облучения (в условиях военного времени применяется термин «дозы, не приводящие к потере работоспособности», в условиях мирного времени - «основные пределы доз»).

Работоспособность в военное время определяется как возможность личного состава нештатных аварийно-спасательных формирований, рабочих и служащих выполнять свои профессиональные обязанности в течение определенного времени после внешнего облучения.

Дозы, не приводящие к потере работоспособности (военное время):

Однократная (в течении первых 4-х суток) - до 50 рад

Многократная (в течении 10 - 30 суток) - до 100 рад.

Многократная (в течении 1 года) - до 300 рад.

Превышение указанных значений доз приводит к уменьшению (потере) работоспособности или (и) к лучевой болезни.

Основные пределы доз (мирное время):

для населения средняя годовая эффективная доза равна 0.001 зиверта (1 мЗв) или эффективная доза за период жизни (70 лет) - 0.07 зиверта (70 мЗв);

для работников РОО средняя годовая эффективная доза равна 0.02 зиверта (20 мЗв) или эффективная доза за период трудовой деятельности (50 лет) - 1 зиверту (1 000 мЗв). Допустимо облучение в годовой эффективной дозе до 0.05 зиверта, но при условии, что она, исчисленная за пять последовательных лет, не превысит 0.02 зиверта.

Регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным и искусственным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения.

В условиях радиационной аварии приведенные основные пределы доз не применяются, а устанавливается зона радиационной аварии и проводятся мероприятия по снижению уровней облучения населения (противорадиационного вмешательства). В случае радиационных аварий допускается облучение, превышающее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких чрезвычайных ситуаций.

Особенности защиты населения при авариях на радиационно-опасных объектах
Радиационно-опасный объект (РОО) - объект, при повреждении, разрушении и аварии которого может произойти радиоактивное загрязнение местности, акватории, воздушного пространства и др. объектов, расположенных на них, способное оказать влияние на действия и боеспособность войск, жизнедеятельность населения и промышленное производство. Это может привести к массовому облучению ионизирующим излучением людей, животных и растений.
РОО представляют опасность ввиду возможного загрязнения окружающей среды, поражения личного состава, населения, находящихся на местности, при разрушении объектов, сопровождающихся выбросом в окружающую среду радиоактивных веществ.
РОО являются вещества, устройства или технологические процессы, имеющие в своем составе (содержащие) радионуклиды в количествах, подлежащих в соответствии с п.п. 1.7 и 1.8 «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99)» обязательному учету и контролю, а также требующих специального разрешения на владение ими и их использование. В том случае, если эти объекты предназначены для осуществления цепных ядерных реакций или способны при определенных условиях к их неконтролируемому возникновению, они являются одновременно радиационно и ядерно опасными.
Согласно п. 3.1 «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99)» установлено четыре категории РОО: - объекты, при аварии на которых возможно их радиационное
101
воздействие на население и могут потребоваться меры по его защите; - радиационное воздействие при аварии ограничивается территорией санитарно-защитной зоны (СЗЗ); - радиационное воздействие при аварии ограничивается территорией объекта.
К радиационно опасным объектам относятся:
а) по признаку «объекты использования атомной энергии»: ядерные установки - сооружения и комплексы с ядерными реакторами, в том числе атомные станции (АЭС). Суда и другие плавсредства, космические и летательные аппараты, транспортные и транспортабельные средства. Сооружения и комплексы с промышленными, экспериментальными и исследовательскими ядерными реакторами, критическими и подкритическими ядерными стендами. Сооружения, комплексы, полигоны, установки и устройства с ядерными зарядами для использования в мирных целях и другие содержащие ядерные материалы сооружения, комплексы, установки для производства, использования, переработки, транспортирования ядерного топлива и ядерных материалов; радиационные источники - не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение; пункты хранения ядерных материалов и радиоактивных веществ, хранилища радиоактивных отходов (далее - пункты хранения) - не относящиеся к ядерным установкам и радиационным источникам стационарные объекты и сооружения, предназначенные для хранения ядерных материалов и радиоактивных веществ, хранения или захоронения радиоактивных отходов (РАО); ядерные материалы - материалы, содержащие или способные воспроизвести делящиеся (расщепляющиеся) ядерные вещества; радиоактивные вещества - не относящиеся к ядерным материалам вещества, испускающие ионизирующее излучение; радиоактивные отходы - ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается;
б) по территориально-производственному признаку: объекты ядерного комплекса (ядерно-топливного цикла (ЯТЦ), атомной энергетики, ядерного оружейного комплекса);
102 базы хранения ядерного оружия; территории и водоемы, загрязненные радионуклидами в результате имевших место радиационных аварий, ядерных взрывов в мирных целях, производственной деятельности и т.п.
Предприятия ЯТЦ осуществляют добычу урана, его обогащение (по 235U), изготовление ядерного топлива, переработку отработанного ядерного топлива и РАО, хранение ядерного топлива, РАО и захоронение РАО.
Предприятия ЯТЦ по производственному признаку делятся на следующие группы: добывающие уран предприятия; предприятия по разделению изотопов урана; предприятия по изготовлению ядерного топлива; предприятия по переработке отработанного ядерного топлива; объекты захоронения РАО.
К добывающим уран предприятиям относятся объекты, осуществляющие добычу урановой руды и ее переработку механическим и гидрометаллургическим способами, и предприятия по подземному выщелачиванию урана.
Основные типы радиационных аварий на этих предприятиях - выброс (разброс) урановой руды при транспортировке (или концентрата) и разлив растворов урана при авариях трубопроводов. В случае аварий на добывающих уран предприятиях принятие экстренных мер по защите населения и ликвидации их последствий, как правило, не требуется, а загрязнения ураном не носят катастрофического характера даже при больших масштабах выбросов из-за малой радиоактивности естественного урана.
Предприятия по разделению изотопов урана (обогащению природного урана) и изготовлению ядерного топлива используют в технологических процессах как физические, так и химические методы. При этом возможны следующие типы аварий: самоподдерживающая цепная реакция деления (СЦР) при проведении работ с растворами, порошками и изделиями из компактного урана; взрывы, в результате которых происходит выброс радиоактивных материалов в окружающую среду; разливы растворов, содержащих уран;
103
- пожары с возгоранием соединений, в которых содержится уран, и выбросом их в окружающую среду.
Из всех этих аварий радиационную опасность для населения могут представлять газоаэрозольный выброс в результате СЦР, содержащий продукты деления урана, а также взрывы и пожары на различных участках технологических процессов.
Переработка отработанного ядерного топлива осуществляется на специальных перерабатывающих предприятиях (радиохимических заводах). В ходе технологических процессов переработки осуществляется разделка тепловыделяющих элементов, растворение топлива, химическое выделение урана, плутония, цезия, стронция и других радионуклидов.
Основными причинами радиационных аварий на радиохимических заводах являются термохимические взрывы, сопровождаемые выбросом содержимого технологических аппаратов (урана и продуктов его деления), в том числе и за пределы санитарнозащитной зоны (СЗЗ) предприятия.
Часть РАО радиохимических заводов и других производств направляются на объекты захоронения. Перед захоронением они, как правило, подвергаются дополнительной переработке. Низко- и среднеактивные отходы, характеризующиеся большими объемами, направляются на переработку, общей тенденцией которой является максимально возможное уменьшение их объема при помощи технологических процессов сорбции, коагуляции, выпаривания, прессовки и т.д. с последующим включением в матрицы (цемент, битум, смолы и т.д.). Хранение низко- и среднеактивных отходов осуществляется в бетонных емкостях с последующим захоронением в естественных и искусственных полостях. Высокоактивные отходы выдерживаются во временных хранилищах и по истечении определенного времени отправляются на захоронение. Классификация жидких и твердых радиоактивных отходов по удельной радиоактивности и по уровню радиоактивного загрязнения представлена в приложении 5.
Наиболее вероятной причиной радиационных аварий на объектах переработки и хранения РАО являются термобарические взрывы с выбросом содержимого технологических аппаратов, в том числе за пределы СЗЗ.
104
Сегодня в стране действует 12 предприятий ядерно-топливного цикла, в том числе 3-мя радиохимическими производствами.
Учитывая, что радиационные аварии на этой группе предприятий в отдельных случаях могут носить крупномасштабный характер, следует относить их к особо опасным производствам. Это обусловлено наличием большого количества специфических факторов, определяющих потенциальную опасность радиохимических предприятий. К ним можно отнести: неконтролируемое накопление делящихся веществ в отдельных фазах производства; образование в ходе технологических процессов взрывопожароопасных газовых смесей; большое количество самовоспламеняющихся и самовозгараемых материалов; наличие химических процессов, протекающих с высоким экзотермическим эффектом; использование оборудования с опасной геометрией и другие.
Всего в течение 40 лет на радиохимических заводах произошло более 20 серьезных аварий. Большая их часть является следствием неконтролируемых физико-химических процессов, меньшая - результатом развития самопроизвольной цепной ядерной реакции.
Наибольшую вероятность возникновения и значительные радиационные последствия имеют аварии при транспортировании ядерных материалов, прежде всего, гексафторида урана (ГФУ) и отработанного ядерного топлива (ОЯТ) водо-водяных энергетических реакторов (ВВЭР). Наиболее опасны, при этом, попадания контейнеров с этими ядерными материалами в зону пожара.
К объектам атомной энергетики относятся АЭС, на которых тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор для производства электрической энергии.
АЭС включает один или несколько ядерных энергетических реакторов. На российских АЭС работают следующие типы ядерных реакторов: водо-водяные энергетические реакторы электрической мощностью 440 МВт (ВВЭР-440) и 1000 МВт (ВВЭР-1000) на тепловых нейтронах;
105 реакторы большой мощности, канальные, электрической мощностью 1000 МВт (РБМК-1000), графитовые, на тепловых нейтронах; реакторы жидкометаллические на быстрых нейтронах электрической мощностью 600 МВт (БН-600); реакторы энергетические графитовые паровые на тепловых нейтронах, электрической мощностью 12 МВт (ЭГП-12).
В России действуют 29 энергоблоков на 9 атомных электростанциях.
Типы ядерных реакторов, эксплуатирующихся на АЭС в России, представлены в прил. 1, их основные физико-технические характеристики - в прил. 2.
Характеризуя состояние эксплуатации действующих российских АЭС, следует отметить, что функционирование их осуществляется, в целом, в соответствии с правилами и нормами безопасности. С учетом накопленного опыта работы станций, а также анализа причин и последствий имевших место аварий, разработаны и реализуются на станциях мероприятия по повышению их надежности и безопасности, при этом учитываются состояние и особенности каждого конкретного энергоблока.
Вместе с тем, на сегодня ни одна из действующих АЭС не имеет процедурно законченного обоснования их безопасности и анализа возможных последствий аварийных ситуаций.
Вызывает беспокойство то, что из 29 действующих энергоблоков только 7 (реакторы - ВВЭР-1000) отличаются достаточной надежностью. Отрицательной особенностью является и то, что большинство российских АЭС расположены в густонаселенной Европейской части страны, в их 30-километровых зонах проживает более 4 миллионов человек.
Положение на АЭС усугубляется тем, что на большинстве станций сегодня имеет место высокая, свыше 65%, степень износа основных производственных фондов. Слабо ведутся работы по модернизации, ремонту и профилактике оборудования. В силу социальных причин наблюдается падение производственной и технологической дисциплины.
В принципе, можно констатировать, что вероятность за- проектных аварий на российских АЭС в настоящее время, в целом,
106
значительно не уменьшилась, а по ряду энергоблоков, где не выполнен комплекс дополнительных мер безопасности, эта вероятность повысилась.
Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам долговременности действия поражающих факторов представляют радиационные катастрофы.
Наглядным примером этому является авария на Чернобыльской АЭС (1986 г.), которая по совокупности своих последствий стала самой крупной катастрофой современности, затронувшей судьбы миллионов людей не только в бывшем СССР, но и за его пределами.
Достаточно сказать, что радиоактивному загрязнению с плотностью по цезию-137 более 1 Ки/км2 только в Российской Федерации подверглись территории 19 субъектов Российской Федерации, общей площадью около 60 тыс.км2, на которых проживает почти 3 млн. человек, в том числе более 600 тыс. детей. Ликвидация последствий этой катастрофы потребовала беспрецедентной в мирное время мобилизации сил и ресурсов страны.
Важнейшими уроками Чернобыльской катастрофы были: осознание возможности возникновения катастроф, протекающих по неисследованным, незапланированным, запроектным сценариям и требующих нестандартных действий по их локализации и ликвидации; недооценка опасностей радиационных аварий, их факторов и параметров воздействия на людей и окружающую среду; отсутствие системы научной поддержки принятия решений локализации и ликвидации аварий; отсутствие заранее созданной информационной базы данных по основным характеристикам радиационно-опасных объектов и окружающих их территорий; недостаточный учет психологических факторов при действиях по оповещению и эвакуации населения из мест радиационных аварий; необходимость повышения в системе защитных мероприятий роли радиационной разведки, оповещения и информирования населения об обстановке и действиях в сложившихся условиях; низкая оснащенность сил, привлекаемых к ликвидации последствий аварии, средствами индивидуальной защиты, радиационной разведки, дозиметрического контроля и специальными транспортными средствами, а также материальными ресурсами;
107
- отсутствие заблаговременно отработанных прав и мер ответственности участников спасательных операций, их гарантий и льгот.
Сегодня вероятность аварий, подобных Чернобыльской, на АЭС с реакторами РБМК, ВВЭР-440, на промышленных и ряде исследовательских реакторов составляет, по оценкам ряда экспертов, 10-3 реакторо-лет при нормативной величине 10-6.. 10-7 реакторо-лет, т.е. на 3-4 порядка выше.
Наиболее тяжелыми радиационными авариями на АЭС, сопровождаемыми выбросом урана и продуктов его деления за пределы СЗЗ и радиоактивным загрязнением окружающей среды, являются запроектные аварии, обусловленные разгерметизацией первого контура реактора с разрушением или без разрушения активной зоны.
Радиационные аварии имеют место на судах и кораблях, космических аппаратах с ядерными реакторами, на объектах с промышленными, экспериментальными и исследовательскими ядерными реакторами.
Корабельные объекты с ЯЭУ оснащаются реакторами легководного типа. Принципиальными их отличиями от реакторов АЭС являются: использование в качестве топлива более обогащенного урана, сравнительно малые размеры, высокая степень защиты.
Характерной причиной радиационных аварий на корабельных ЯЭУ является разгерметизация первого контура реактора с выбросом при определенных условиях продуктов деления урана в окружающую среду.
На существующих космических объектах с ЯЭУ используются малогабаритные ядерные реакторы с высоким обогащением природного урана, на быстрых нейтронах, с жидкометаллическим теплоносителем, электрической мощностью несколько МВт.
Особенности последствий радиационных аварий космических объектов с ЯЭУ в полете обуславливаются разрушением и сгоранием летательного аппарата при входе в плотные слои атмосферы. Выпадением его радиоактивных остатков, в том числе отдельных высокоактивных, на значительном пространстве, исчисляемом десятками тысяч километров квадратных.
Заслуживают внимания промышленные и исследовательские ядерные установки. Характерной особенностью этих установок является их размещение, как правило, непосредственно в жилых
108
производственных зонах крупных промышленных центров (Москва, Санкт-Петербург, Димитровград и др.). В частности, в г. Москве и Московской области в настоящее время эксплуатируется более 50- ти ядерных исследовательских установок различного назначения.
Следует отметить, что оборудование и технологические системы большинства исследовательских ядерных установок морально и физически изношены, нормативно-технические документы обеспечения безопасности использования этих установок либо устарели, либо отсутствуют, продолжается утечка из состава эксплуатационного персонала высококвалифицированных кадров, не имеется достаточного финансирования для необходимой реконструкции установок.
При этом, отсутствует государственная программа использования исследовательских реакторов, которая могла бы установить целесообразный объем исследований на них, а также определить перечень выводимых из эксплуатации реакторов.
На исследовательских ядерных установках исключаются крупномасштабные радиационные аварии глобального или регионального характера. Однако, они имеют серьезную опасность для персонала и населения, проживающего на прилегающей к ним территории.
Наиболее тяжелые последствия радиационных аварий на промышленных, экспериментальных и исследовательских ядерных реакторах имеют место при разрушении активных зон реакторов, сопровождаемом выбросом урана и продуктов его деления за пределы СЗЗ и загрязнением окружающей среды.
Определенные особенности и большое разнообразие имеют радиационные аварии на установках технологического, медицинского назначения и источниках тепловой и электрической энергии, в которых используются радионуклиды, что обусловлено их различием по назначению, конструкции, составу радионуклидов, типу и мощности излучения. Большинство используемых в этих установках радионуклидов являются мощными гамма - излучателями (60Со, 137Cs и другие) и опасны при разрушении защитных контейнеров, в которых они находятся, или изъятии их из контейнеров без принятия мер защиты. В меньшей части установок используются альфа- и бета - излучатели (238Pu, 210Po, 90Sr и другие), которые без надлежащей защиты также опасны для внешнего облучения.
109
Радиоактивное загрязнение окружающей среды при авариях установок технологического и медицинского назначения, источников тепловой и электрической энергии, в которых используются радионуклиды, возможно только при изъятии капсул с радионуклидами из защитных контейнеров и механическом или физическом разрушении капсул. При этом, как правило, происходит местное загрязнение окружающей среды. Возможен разнос загрязнений человеком, транспортом, ветром, водными потоками. Уровни радиации, плотности загрязнения зависят от типа радионуклида и его количества. В отдельных устройствах активность радионуклидов («топлива») может достигать 1016-1017 Бк.
Территории и водоемы загрязнены радионуклидами в результате имевших место радиационных аварий, ядерных взрывов в мирных целях. Производственная деятельность предприятий ЯТЦ представляет радиационную опасность в связи с возможным разносом радиоактивных загрязнений и облучением населения, проживающего на загрязненных территориях, как за счет внешнего, так и внутреннего облучения, обусловленного употреблением загрязненных продуктов (овощей, фруктов, мяса, рыбы, молока, ягод, грибов) и попаданием радиоактивных аэрозолей через дыхательные пути.
Значительную радиационную опасность представляют отходы ядерных технологий. Узловой проблемой отходов ядерных технологий является накопление отработанного ядерного топлива. Всего его накоплено уже более 10 тыс. т., с суммарной активностью свыше 4 млрд. Ки. Проблема хранения и переработки отработанного ядерного топлива на сегодня стала тупиковой. Объемы этого вида отходов постоянно растут, а мощности по их переработке и утилизации остаются неизменными.
В результате в хранилищах на атомных электростанциях отработанного ядерного топлива хранится в среднем в 1,5-2 раза больше, чем в активных зонах, а на Белоярской, Билибинской, Ленинградской и Курской АЭС - в 3-4 раза больше, с общей активностью отработанного топлива в 6-8 раз выше, чем в «рабочих» зонах.
Сложное положение с отработанным ядерным топливом на атомном флоте. Особенно беспокоят суда гражданского флота у причалов, служащие своеобразными хранилищами отработанного топлива.
Другой составляющей проблемы последствий ядерных
110
технологий является состояние с накоплением и хранением радиоактивных отходов. Основные источники образования радиоактивных отходов - добыча, обогащение урановой руды и производство ТВЭЛов, эксплуатация АЭС, регенерация отработанного топлива, использование радиоактивных изотопов. Данные о количестве радиоактивных отходов, накопленных в настоящее время, крайне тревожные. Общий их объем составляет около 500 млн.м3 (не считая низко активных отвальных пород на добывающих предприятиях - до 100 млн.м3), с суммарной активностью свыше 2,0 млрд. Ки. Наибольшую опасность и в этом отношении представляют предприятия ядерно-топливного цикла с радиохимическим производством. В частности, только на производственном объединении «Маяк» накоплено и хранится около 550 млн. Ки жидких и до 12 млн. Ки твердых отходов.
Чрезвычайные ситуации (ЧС) на РОО возможны по следующим причинам: диверсии в террористических целях; нарушение технологических процессов; нарушение техники безопасности и режима работы; боевые действия; природные явления и техногенные аварии и инциденты.
Эти обстоятельства потребуют: привлечения сил и средств Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (МЧС России) для ликвидации последствий ЧС; изменение маршрутов передвижения сил и средств МЧС России, населения; необходимости проведения мероприятий по радиационной защите войск и сил МЧС России и населения.
Критерии, определяющие состояние ЧС, и классификация их масштабов установлены на федеральном уровне «Положением о классификации чрезвычайных ситуаций природного и техногенного характера».
Определение состояния и масштаба ЧС радиационного характера только по размерам причиненного ущерба здоровью и имуществу населения ограничивает возможности планирования мероприятий по эффективной защите населения в условиях функционирования РСЧС,
111
относящегося к режимам повседневной деятельности и повышенной готовности к возможным событиям, связанным с техногенным неконтролируемым облучением населения. Это существенно в случае радиационных аварий, тем более, что ущерб здоровью человека при облучении может быть обнаружен («клинически определен») в зависимости от полученной им эффективной дозы, спустя продолжительное время после факта облучения, и даже только у его потомства (стохастические эффекты излучения).
Таблица 5
Сводка масштабов и признаков ЧС в соответствии с «Положением о классификации чрезвычайных ситуаций природного и техногенного характера»


Классифика
ция
ЧС
(масштаб ЧС)

Признаки ЧС по охвату территории
(зона ЧС)

Количественные признаки ЧС

Число пострадав - ших (чел.)

Нару
шены
усло-вия
жиз
недеятель
ности
(чел.)

Материал ьный ущерб (к- во МРОТ)

Локальная ЧС

В пределах территории объекта производственного или социального назначения

не более 10

не более 100

не более 1000

Местная ЧС

В пределах населенного пункта, города, района

от 10 до 50

от 100 до 300

от 1000 до 5000

Территориальная ЧС

В пределах субъекта РФ

от 50 до 500

от 300 до 500

от 5000 до 0,5 млн.

Региональная
ЧС

В пределах 2-х субъектов РФ

от 50 до 500

от 500 до 1000

от 0,5 млн. до 5 млн.

Федеральная
ЧС

В пределах более чем 2-х субъектов РФ

более 500

более 1000

более 5 млн.

Т рансграничная ЧС

В случае выхода за пределы РФ или охвата территории РФ, если источник за ее границей

не регламентируется

112
Примечание. В соответствии с «Положением о классификации чрезвычайных ситуаций природного и техногенного характера» классификационными признаками являются: число пострадавших, либо нарушение условий жизнедеятельности определенного числа людей, либо размер материального ущерба, а также территориальный признак. При этом имеется в виду, что количественные показатели указаны «на день возникновения ЧС».
При классификации аварий на РОО существует несколько подходов. Это обусловлено тем, что подобные аварии отличаются большим разнообразием присущих им признаков, а также объектов, на которых они могут происходить. В большинстве случаев аварии, сопровождающиеся выбросами радиоактивных веществ и формированием радиационных полей, классифицируют применительно к АЭС.
В зависимости от характера и масштабов повреждений и разрушений аварии на РОО подразделяют на проектные, проектные с наибольшими последствиями (максимально проектные) и запроектные (гипотетические).
Под проектной аварией понимается авария, для которой определены в проекте исходные события аварийных процессов, характерных для того или иного объекта (типа ядерного реактора) или другого радиационно-опасного узла, конечные состояния (контролируемые состояния элементов и систем после аварии), а также предусмотрены системы безопасности, обеспечивающие ограничение последствий аварий установленными пределами.
Максимально проектные аварии характеризуются наиболее тяжелыми исходными событиями, обусловливающими возникновение аварийного процесса на данном объекте. Эти события приводят к максимально возможным в рамках установленных проектных пределов радиационным последствиям.
Под запроектной (гипотетической) аварией понимается такая авария, которая вызывается неучитываемыми для проектных аварий исходными событиями и сопровождается дополнительными по сравнению с проектными авариями отказами систем безопасности.
В радиационной аварии различают четыре фазы развития: начальную, раннюю, промежуточную и позднюю (восстановительную).
Начальная фаза аварии является периодом времени, предшествующим началу выброса (сброса) радиоактивности в
113
окружающую среду, или периодом обнаружения возможности облучения населения за пределами СЗЗ предприятия. В отдельных случаях подобная фаза может не существовать вследствие своей быстротечности.
Ранняя фаза аварии (фаза «острого» облучения) является периодом собственно выброса радиоактивных веществ в окружающую среду или периодом формирования радиационной обстановки непосредственно под влиянием выброса (сброса) в местах проживания или нахождения населения. Продолжительность этого периода может быть от нескольких минут до нескольких часов в случае разового выброса (сброса) и до нескольких суток в случае продолжительного выброса (сброса). Для удобства в прогнозах продолжительность ранней фазы аварии в случае разовых выбросов (сбросов) принимается, как правило, равной 1 суткам.
Промежуточная фаза аварии охватывает период, в течение которого нет дополнительного поступления радиоактивности из источника выброса в окружающую среду и в течение которого решения о введении или продолжении ранее принятых мер радиационной защиты принимаются на основе проведенных измерений уровней содержания радиоактивных веществ в окружающей среде и вытекающих из них оценок доз внешнего и внутреннего облучения населения. Промежуточная фаза начинается с нескольких первых часов с момента выброса (сброса) и длится до нескольких суток, недель и дольше. Для разовых выбросов (сбросов) протяженность промежуточной фазы прогнозируют, как правило, в пределах 7-10 суток.
Поздняя фаза (фаза восстановления) характеризуется периодом возврата к условиям нормальной жизнедеятельности населения и может длиться от нескольких недель до нескольких десятков лет в зависимости от мощности и радионуклидного состава выброса, характеристик и размеров загрязненного района, эффективности мер радиационной защиты.
В зависимости от границ зон распространения радиоактивных веществ и радиационных последствий потенциальные аварии на АЭС делятся на 6 типов:
- Локальная авария. Радиационные последствия аварии ограничиваются пределами объекта. При этом возможно облучение
114
персонала и загрязнение зданий и сооружений, находящихся на территории АЭС, выше уровней, установленных для нормальной эксплуатации. Местная авария. Радиационные последствия аварии ограничиваются пределами пристанционного поселка и населенных пунктов в районе расположения АЭС. При этом возможно облучение персонала и населения выше уровней, установленных для нормальной эксплуатации. Территориальная авария. Радиационные последствия аварии ограничиваются пределами субъекта Российской Федерации, на территории которого расположена АЭС, и включают, как правило, две и более административно-территориальные единицы субъекта. При этом возможно облучение персонала и населения нескольких административно-территориальных единиц субъекта Российской Федерации выше уровней, установленных для нормальной эксплуатации. Региональная авария. Радиационные последствия аварии ограничиваются пределами двух и более субъектов Российской Федерации и приводят к облучению населения и загрязнению окружающей среды выше уровней, установленных для нормальной эксплуатации. Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1000 человек, или материальный ущерб от аварии превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной. Трансграничная авария. Радиационные последствия аварии выходят за территорию Российской Федерации либо данная авария произошла за рубежом и затрагивает территорию Российской Федерации.
Перечисленные радиационные последствия потенциальных аварий на ЭС определяют масштабы чрезвычайных ситуаций радиационного характера.
Международным агентством по атомной энергетике (МАГАТЭ) разработана международная шкала событий на АЭС. В соответствии
115
с этой шкалой аварии на АЭС подразделяются по характеру и масштабам последствий, а некоторые и по причинам их вызвавшим.
Градация аварий на АЭС осуществляется по 7 уровням: глобальная авария; тяжелая авария; авария с риском для окружающей среды; авария в пределах АЭС; серьезное происшествие; происшествие средней тяжести; незначительное происшествие.
Международная шкала событий на АЭС приведена в приложении 6.
Помимо рассмотренных выше классификаций, существует классификация нарушений в работе АЭС, которой придерживаются при расследовании и учете аварий и происшествий, выявлении причин и обстоятельств их возникновения, оценке с точки зрения безопасности, а также разработке мер по устранению последствий нарушений, предотвращению их возникновения и повышению безопасности.
В соответствии с этой классификацией нарушения в работе АЭС подразделяются на аварии и происшествия. Выделяют 4 категории аварий, которые характеризуются различным количеством выброшенных радиоактивных веществ в окружающую среду, начиная с выброса большей части радиоактивности из активной зоны ядерного реактора, при котором превышаются дозовые пределы для гипотетической аварии (категория АО -1), и заканчивая выбросом радиоактивных веществ в таких количествах, при которых не превышаются дозовые пределы для населения при проектных авариях (категория АО-4).
Происшествия характеризуются возникновением неисправностей и повреждений различных узлов ядерного реактора, систем оборудования и подразделяются на 10 типов. Наибольшую опасность представляет происшествие первого типа (ПО-1), при котором, помимо неисправностей и повреждений, происходит выброс в окружающую среду радиоактивных продуктов выше предельно допустимых норм без нарушения пределов безопасной эксплуатации АЭС.
Особенности радиоактивного загрязнения местности при авариях (разрушениях) на АЭС, космических аппаратах и других РОО определяются радионуклидным составом продуктов загрязнения,
116
характером и особенностями их пространственного распределения.
Последствия радиационных аварий и, прежде всего, радиоактивные загрязнения окружающей среды имеют сложную зависимость от исходных параметров РОО (типа объекта, типа и мощности ядерной или радиоизотопной установки, характера радиохимического процесса и т.д.) и метеоусловий.
Характер радиоактивного загрязнения местности в результате аварий на АЭС зависит от типа и масштабов аварии - от локальной утечки в атмосферу ограниченного количества радиоактивных газов до полного взрывного разрушения активной зоны реактора с выбросом во внешнюю среду огромного количества радиоактивных веществ, загрязняющих огромную территорию. На территории АЭС и в непосредственной зоне, прилегающей к станции, в результате такой аварии могут быть разбросаны радиоактивные фрагменты конструкций, куски тепловыделяющих элементов (ТВЭЛов), графитовых замедлителей и других радиоактивных элементов, формирующие гамма-излучение, мощность дозы которого может достигать сотни и тысячи рад в час вблизи аварийного реактора.
Радиоактивное загрязнение местности в районе аварийной АЭС до нескольких десятков километров является крайне неравномерным. Возможно образование локальных пятен, радионуклидный состав которых может сильно различаться в результате фракционирования радионуклидов при их выбросе и распространении. На больших расстояниях от места аварии радиоактивное загрязнение становится более равномерным при соответствующем уменьшении уровня загрязнения.
Продукты аварий АЭС в своем составе имеют большую долю долгоживущих радионуклидов. Степень обогащения тем выше, чем продолжительнее работал реактор перед аварией (т. е. чем больше его кампания). Соответственно, спад активности в районах аварий АЭС происходит в несколько раз медленнее.
При авариях космических объектов, имеющих на своем борту ядерные энергетические реакторы, содержащих ядерные материалы, несгоревшие фрагменты реакторов или изотопных батарей разбрасываются на большой территории и даже в масштабе целых континентов.
Наибольшую информативность в целях обнаружения остатков летательных аппаратов при этом представляют:
117 среди продуктов деления - 95Zr, 95Nb, 140La; среди продуктов нейтронной активации - 58Fe, 58Co, 60Co, 46Sc, 54Mn.
На предприятиях по разделению изотопов урана (обогащению
природного урана) и изготовлению ядерного топлива выход радионуклидов за пределы СЗЗ возможен при авариях, связанных с возникновением СЦР или взрывов и пожаров на участках технологических процессов.
Радионуклидный состав и активность выбросов за пределы СЗЗ при термохимических и термобарических взрывах на предприятиях по переработке отработавшего ядерного топлива и радиоактивных отходов перед захоронением зависит от характера технологического процесса и этапа его осуществления. Причем, радионуклиды, присутствующие в технологических средах, не участвуют в химических реакциях взрывного характера, и причиной их выбросов является разрушение технологического аппарата с высокой температурой технологической среды (для растворов около 100°С).
Выброс летучих продуктов деления ядерного топлива при авариях на корабельных ЯЭУ за пределы СЗЗ с активностью, представляющей опасность для населения и требующей осуществления мер защиты, маловероятен.
Исследовательские реакторы в своем большинстве размещаются в густонаселенных районах, несмотря на их небольшую энергетическую мощность и меньший выброс радиоактивных продуктов при авариях.
Радиоактивное загрязнение возможно и при авариях источников, используемых в промышленности, медицине, сельском хозяйстве, научных учреждениях. Характер и степень загрязнения зависят от параметров и условий использования данных источников. Как правило, такие источники являются точечными и при их авариях возникает локальное загрязнение, а ликвидация аварии сводится в большинстве случаев к поиску, локализации и удалению источников.
Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению.
Степень опасности радиоактивно-загрязненных поверхностей
118
определяется радионуклидным составом загрязнений, плотностью загрязнений, характером загрязненных поверхностей, временем, прошедшим после загрязнения, и некоторыми другими характерными для соответствующего загрязнения причинами.
Наиболее характерные особенности имеет радиоактивное загрязнение вследствие аварий ядерных реакторов различного характера.
В соответствии с удельным весом в составе выбросов биологически наиболее значимых радионуклидов при аварии ядерных реакторов в развитии радиационной обстановки выделяют, как правило, два основных периода: «йодовой опасности», продолжительностью до 2-х месяцев, и «цезиевой опасности», который продолжается многие годы.
В «йодном периоде», кроме внешнего облучения (131J, 137Cs, 90Sr, тяжелые металлы - до 45% дозы за первый год), основные проблемы связаны с молоком и листовыми овощами - главными «поставщиками» радионуклида йода внутрь организма.
«Цезиевый период», наступающий по прошествии 10 периодов полураспада йода-131, является периодом, когда цезий определяет основную причину радиационного воздействия на население и окружающую среду.
На первом этапе радиационное воздействие на людей складывается из внешнего и внутреннего облучений, обусловленных соответственно радиоактивными облучениями от загрязненных радионуклидами объектов окружающей среды и вдыханием радионуклидов с загрязненным воздухом, на втором этапе - облучением от загрязненных радионуклидами объектов окружающей среды и введением их в организм человека с потребляемой пищей и водой, а в дальнейшем - в основном за счет употребления населением загрязненных продуктов питания. Принято считать, что 85% суммарной прогнозируемой дозы облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленного потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15% падает на дозу внешнего облучения.
Радиоактивное загрязнение водоемов, как правило, представляет опасность лишь в первые месяцы после аварии.
При оценке экологической обстановки, сложившейся в результате
119
радиационной аварии в регионе или на определенной территории, в качестве «фона» принимается относительно удовлетворительное (благополучное) состояние окружающей среды.
Экологическое же неблагополучие оценивается с двух позиций: состояние природной среды и состояние среды обитания и здоровья населения.
Состояние природной среды характеризуется критериями загрязнения воздушной среды, воды, почв, деградации экосистем и, как правило, оценивается, исходя из общеэкологических и санитарногигиенических требований.
При оценке состояния среды обитания человека принимаются во внимание, в первую очередь, санитарно-гигиенические нормы. Кроме того, учитываются все нормы и требования по чистоте источников водоснабжения, рыбохозяйственных водоемов, лесных угодий и т.п. Степень ухудшения здоровья населения характеризуется по медико-демографическим критериями.
При этом под существенным ухудшением здоровья населения, прежде всего, понимается увеличение числа нарушений здоровья, которые являются необратимыми и несовместимыми с жизнью людей. Показателями ухудшения здоровья населения являются также изменение структуры причин смерти и увеличение смертности за счет онкологических заболеваний, вызванных загрязнением окружающей среды радионуклидами, отклонений физического и нервнопсихического развития, нарушений течения и исходов беременности и родов, связанных с загрязнением окружающей среды.
В приложении 3 приведены Основные пределы доз облучения населения, установленные НРБ-99 (Нормами радиационной безопасности), которые используются при оценке экологической обстановки.
Превентивные (предупреждающие) меры радиационной защиты населения при авариях РОО предпринимаются только при достаточной длительности начальной фазы аварии. К числу превентивных мер, предпринимаемых в это время, относятся укрытие населения в противорадиационных укрытиях и, по возможности, обеспечение населения радиозащитными профилактическими препаратами и средствами индивидуальной защиты. На протяжении этой фазы осуществляются организационные мероприятия по подготовке к
120
эвакуации населения. При угрозе выброса радиоактивного йода и других биологически значимых нуклидов (например, 90Sr, 137Cs и др.) прекращается выпас молочного скота и организуется перевод его на стойловое содержание.
Основными документами, устанавливающими нормы в области радиационной безопасности населения в соответствии с действующим законодательством РФ и рекомендациями международных организаций, являются: Нормы радиационной безопасности СП 2.6.1.758-99 (НРБ-99), утвержденные Главным государственным санитарным врачом Российской Федерации 02.07.99 г. Основные санитарные правила обеспечения радиационной безопасности СП 2.6.1.799-99 (ОСПОРБ-99), утвержденные Главным государственным санитарным врачом Российской Федерации 27.12. 99 г.
Среднегодовая доза облучения человека, не превышающая 20 мЗв рассматривается как допустимая для всех категорий населения, постоянно проживающего на территории, загрязненной радионуклидами - источниками бета- и гамма-излучения. При этом обязательными условиями, обеспечиваемыми администрацией территорий, являются проведение постоянного радиационного контроля обстановки, мер по снижению (ограничению) облучения населения, а также по его информированию о результатах контроля и о современных научных и статистических данных о риске проживания на данной территории.
Территории, на которых обнаружены локальные радиоактивные загрязнения, должны зонироваться на основании тех же критериев, которые применяются для зонирования территорий, ранее попадавших в область радиационной аварии и на которых в данное время протекают процессы, свойственные ее восстановительной стадии.
Обязательной мерой защиты должно быть длительное (в течение нескольких первых суток после аварии) укрытие детей, проживающих в радиусе около 5 км вокруг АЭС. При радиусе СЗЗ равном 3 км эта мера защиты потребуется для детей, проживающих на территории площадью около 50 км2.
При аварии на РБМК-1000 второго поколения меры защиты населения не являются обязательными. Вместе с тем, такие меры
121
защиты, как укрытие и йодная профилактика, могут быть проведены в начальном периоде аварии с учетом конкретной обстановки и местных условий.
Основными целями мер радиационной защиты населения, вводимых на протяжении ранней и промежуточной стадий, являются исключение или снижение доз внешнего облучения, радиоактивного загрязнения поверхности тела и одежды людей, предотвращение и снижение поступления радиоактивных веществ через органы дыхания, и, в отдельных случаях, через органы пищеварения. Меры, предназначенные в этот период для снижения внешнего облучения, будут эффективными и для снижения дозы внутреннего облучения. К таким мерам, в первую очередь, относится укрытие населения в противорадиационных укрытиях и его эвакуация.
При планировании укрытия населения, включая укрытие населения в противорадиационных укрытиях, исходят из численности подлежащего укрытию населения, имеющихся возможностей укрытия населения в специально подготовленных по программам гражданской обороны (ГО) убежищах и сооружениях, а также из противорадиационных и технических характеристик убежищ и сооружений, предполагаемой длительности нахождения населения в укрытиях и способах последующего вывода или эвакуации укрывшихся из укрытий.
При альтернативном выборе необходимости укрытия населения в укрытиях или эвакуации его через непродолжительное время после начала аварии принятие решения основывается, прежде всего, на значении предотвращенной дозы за рассматриваемый период и реальных возможностях осуществления каждой из этих мер защиты. В большинстве случаев, в условиях выброса короткоживущих нуклидов, предпочтительнее будет обеспечить быстрое укрытие и последующую хорошо организованную эвакуацию из укрытий, чем провести быструю эвакуацию ввиду затруднений, связанных с ее организацией.
К основным противорадиационным характеристикам сооружений, не относящихся к типовым убежищам, относятся коэффициенты ослабления (коэффициенты защиты) гамма-излучения конструкциями зданий и сооружений. Однако эффективность использования для укрытия противорадиационных убежищ, других сооружений, а также
122
просто нахождение в производственных и жилых зданиях оценивают также и по предотвращению радиоактивного загрязнения одежды и кожных покровов, по снижению интенсивности поступления радиоактивных веществ в организм при вдыхании. В общем плане эффективность укрытия определяется коэффициентами эффективного экранирования при нахождении в убежищах и транспорте при последующей эвакуации.
В идеальном случае укрытие людей в убежищах осуществляют как превентивную меру, предпринимаемую на начальной фазе аварии. Эта мера ослабляет радиационное воздействие проходящего облака или факела выброса на следующей, ранней фазе аварии. Сигналом к этому является извещение населения о необходимости укрытия в убежищах, при их отсутствии - укрытия во внутренних помещениях, а также извещение о необходимости использовать специальные и подручные средства защиты органов дыхания. Целесообразно заранее информировать население, что укрытие в помещениях, не являющихся убежищами, дает наибольший эффект при использовании зданий, построенных из плотных материалов, а в самом здании - при использовании цокольного этажа и подвалов. Необходимо рекомендовать находиться в помещениях, расположенных в центральной части зданий и, по возможности, не имеющих окон. При наличии окон людям следует занимать углы или другие места, защищенные от прямого дневного света через окна.
Население необходимо заранее информировать, что при объявлении тревоги нужно закрыть окна и внешние двери, перекрыть системы вентиляции и другие отверстия, затушить огонь в печах, закрыть дымовые заслонки в них. Степень воздухообмена можно еще более сократить, поместив, по возможности, слой влажных газет или ткани в щели открывающихся дверей и окон.
В общей системе мероприятий по защите людей, проживающих вблизи РОО, а также личного состава МЧС России, привлекаемого к ликвидации последствий ЧС (разрушений) РОО, важную роль играет правильный выбор и своевременное обеспечение средств индивидуальной защиты (СИЗ).
Применение мер индивидуальной защиты населения планируется для ранней и промежуточной фаз аварии как обязательное дополнение к укрытию и эвакуации населения, осуществляемое, прежде всего, в
123
период прохождения облака (факела) радиоактивного выброса и в период формирования следа радиоактивного облака. Целями этих мер является предотвращение или снижение поступления радиоактивности через органы дыхания и снижение уровней радиоактивного загрязнения поверхности тела.
К СИЗ органов дыхания относят специальные и простые (подручные средства). Специальные средства обеспечивают защиту от радиоактивных аэрозолей, газообразных и летучих радиоактивных нуклидов (например, радиойода в различных его физико-химических формах) за счет использования специальных респираторов и противогазов с селективными коробками. Ими, как правило, обеспечивается персонал аварийных команд и формирований гражданской обороны. Для населения наиболее доступной мерой является применение, как правило, предметов личного пользования в качестве простых средств защиты органов дыхания, во время перемещения к укрытиям, нахождения в укрытиях и в ходе эвакуации. Относительная эффективность этих средств защиты приведена в приложении 4.
Защитной одеждой, как средством защиты поверхности тела от радиоактивного загрязнения, обеспечивается только персонал аварийных команд и формирований гражданской обороны. Поэтому применительно к населению основным плановым мероприятием следует считать разъяснение необходимости максимальной по площади защиты поверхности тела любой одеждой.
При радиоактивном загрязнении верхней одежды предусматривается: предотвращение заноса радиоактивных веществ в убежища с загрязненной одеждой, путем создания на входе в убежище пункта дозиметрического контроля, санитарного шлюза и места складирования загрязненной одежды; контроль за загрязнением одежды в сборных эвакопунктах; замену загрязненной одежды на чистую, для чего необходимо создание запасов одежды (спецодежды).
Оперативное решение этих задач может базироваться только на результатах предварительного прогнозирования.
Обоснование выбора СИЗ производится также по результатам прогнозирования развития аварии.
Обсуждая особенности использования СИЗ в зонах
124
радиоактивного загрязнения при авариях РОО, следует отметить, что при этом необходимо защищать органы дыхания от попадания внутрь организма человека радионуклидов, которые могут находиться в загрязнённой атмосфере в виде тонкодисперсного аэрозоля, пара или газа, а кожные покровы человека - от непосредственного контакта с радионуклидами.
Опыт участия личного состава в ликвидации последствий аварии на Чернобыльской АЭС показал, что из табельных образцов фильтрующих средств защиты органов для защиты от тонкодисперсных аэрозолей и паров радиоактивного йода и йодистого метила применялись общевойсковые противогазы ПМК и респираторы РМ-2. Респираторы Р-2, как правило, могли использоваться однократно. Следует отметить, что при очистке загрязненного воздуха от радиоактивных частиц аэрозолей происходит накопление радиоактивности в противоаэрозольном фильтре коробки противогаза ПМК и патрона респиратора РМ-2 и они превращаются в источник ионизирующих излучений. Впоследствии был разработан новый респиратор типа «РЧ», коробка которого предназначена для очистки загрязнённого воздуха от радиоактивных аэрозолей и паров радиоактивного йода и йодистого метила. В комплект респиратора «РЧ» входит защитный экран из прозрачного полиметакрилата, который защищает лицо и глаза человека от радиационного ожога. Для защиты органов дыхания от радиоактивной пыли могут использоваться одноразовые респираторы ШБ-1 «Лепесток-200».
СИЗ уменьшают заражённость кожных покровов человека, но не могут полностью защитить от проникающей радиации. Возможность ослабления ионизирующего излучения (ИИ) определяется, с одной стороны, проникающей способностью ИИ, с другой - свойствами материла.
Альфа-частицы имеют очень малую величину свободного пробега и поэтому материалами СИЗ поглощаются полностью. В зонах заражения бета-частицы обладают высокой энергией (до 3 МэВ и более) и поэтому поглощаются не полностью. Гамма-излучение обладает высокой проникающей способностью и материалами СИЗ практически не ослабляются. Допустимые плотности заражения кожи человека и одежды мирного времени на несколько порядков ниже, чем для военного времени.
125
Защитная одежда, используемая в этих ситуациях, должна быть, как правило, одноразовая и изготовлена из плотной ткани или нетканого материала с малой удерживающей способностью радиоактивной пыли, с элементами герметизации по низкам брюк и рукавов.
Эвакуация населения представляет собой наиболее эффективную, но крайнюю защитную меру, которая осуществляется в случае необходимости на протяжении ранней и промежуточной фаз аварии. Эвакуация может быть эффективной мерой и после нахождения населения в укрытиях, как способ снижения дозы облучения от загрязненной окружающей среды. Так как максимальные мощности дозы гамма-излучения характерны для начального периода аварии, особенно при наличии в выброшенной смеси короткоживущих нуклидов, то срок начала эвакуации должен быть как можно более ранним.
Особенности проведения эвакуации определяются характером воздействия радиационного загрязнения, численностью и охватом вывозимого населения, временем и срочностью проведения эвакомероприятий.
Отселение планируется только при таких сценариях аварии, когда результирующая мощность сочетанной дозы облучения населения медленно спадает во времени, и когда допустим период времени на подготовку и осуществление отселения в течение поздней фазы аварии. Во всех других ситуациях разрабатываются планы экстренной эвакуации, которая перейдет в отселение при невозможности возврата населения, выявленной конкретными обследованиями зоны радиоактивного загрязнения.
Основными задачами медицинского обеспечения населения на ранней и промежуточной фазах аварии являются оказание первой медицинской помощи и выявление лиц, нуждающихся в противолучевой терапии.
Объем и характер необходимой медицинской помощи зависит от тяжести аварии, уровня полученных доз, количества облученных людей. Последний фактор имеет особое значение, так как при большом количестве облученных оказание эффективной медицинской помощи требует принятия дополнительных мер.
Первая помощь населению оказывается персоналом медицинской службы аварийно-спасательных формирований и привлекаемых
126
территориальных медицинских служб в районе размещения объекта. Специальная подготовка персонала медицинских учреждений, которые могут быть привлечены к аварийным действиям, планируется и осуществляется заблаговременно.
В качестве защитных противорадиационных мер уже на ранней и промежуточной фазах аварии осуществляется санитарная обработка населения. Санитарная обработка населения включает: радиационный контроль поверхности тела и одежды; помывку под горячим душем с применением бытовых моющих и стандартных дезактивирующих средств; замену загрязненной одежды и обуви на чистые.
Применение радиозащитных профилактических препаратов
предназначено для: снижения или блокировки поступления или последующего отложения в организме радиоактивных веществ; ускорения выведения из организма поступивших в него радионуклидов; ослабления физиологических и биохимических последствий радиационных эффектов в организме.
Наиболее приемлемым с практической точки зрения и подлежащим планированию в качестве превентивной и экстренной мер радиационной защиты населения является применение препаратов стабильного йода при потенциальном или реальном выбросе в атмосферу радиойода из реакторных производств.
Эффективность препаратов стабильного йода и рекомендуемые дозы приема приведены в приложении 5.
Планирование мер по ограничению поступления радиоактивных веществ через органы пищеварения на протяжении ранней и промежуточной фаз аварии проводится при наличии достоверных прогнозных данных об аварийных и допустимых уровнях радиоактивного загрязнения каждого из основных видов продуктов и питьевой воды, особенно по суммарной радиоактивности.
Наиболее допустимой мерой в ходе ранней и промежуточной фаз аварии является введение ограничений на потребление отдельных категорий пищевых продуктов и воды из конкретных источников водоснабжения. Осуществление всего комплекса мер в полном объеме наиболее реально на поздней фазе аварии.
127
Основные нормативные акты и документы по вопросам обеспечения радиационной безопасности: Федеральный закон «О радиационной безопасности населения» от 05.12.1995 г. (с изменениями от 22.08.2004 г.) Гигиенические нормативы ГН 2.6.1.19-02 «Санитарно-защитные зоны и зоны наблюдения радиационных объектов. Условия эксплуатации и обоснования границ» СП 2.6.1.758-99 «Ионизирующее излучение, радиационная безопасность. Нормы радиационной безопасности (НРБ-99)» СП 2.6.1.799-99 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99)» «Концепция радиационной, медицинской, социальной защиты и реабилитации населения Российской Федерации, подвергшегося аварийному облучению» (РИКРЗ, 1996 г.) «Обоснование основных мероприятий защиты населения при ликвидации чрезвычайных ситуаций радиационного характера». Методические рекомендации. - М.: ФГУ ВНИИ ГОЧС (ФЦ), 2004;
«Санитарные правила обращения с радиоактивными отходами» (Минздрав России, 2002 г.) Справочник спасателя. Книга 7. «Спасательные работы по ликвидации последствий радиоактивных загрязнений». - М.: ВНИИ ГОЧС, 1995 «Справочник по радиационной безопасности». - 4-е издание, пер. и доп. - М.: Энергоатомиздат, 1991 и др.

Виды аварий на радиационно опасных объектах

С расширением масштабов производственной деятельности растет использование технологических процессов, требующих большого количества энергии. В результате увеличивается потенциальная угроза для здоровья и жизни людей, окружающей среды, нормального функционирования производства.

Например, с начала эксплуатации атомных электростанций в 14 странах мира на них произошло более 150 инцидентов и аварий различной степени сложности.

Так, из-за нарушений в системе охлаждения реактора 28 марта 1979 г. произошел выброс радиоактивных газов в атмосферу и жидких радиоактивных отходов в р. Сукуахана на американской АЭС «Тримайл-Айленд». Блок, на котором произошла авария, не был оснащен дополнительной системой обеспечения безопасности. В верхней части его корпуса образовался газообразный пузырь объемом около 30 м 3 , состоявший главным образом из водорода и радиоактивных газов - криптона, аргона, ксенона и др. Возникла реальная опасность взрыва смеси водорода и кислорода. Сила взрыва была бы эквивалентна взрыву 3 т тринитротолуола, что могло привести к неминуемому разрушению корпуса реактора. Уровень радиации в защитной оболочке достиг к тому времени 30 тыс. бэр в час, что в 600 раз превышало смертельную дозу. Но с 30 марта объем пузыря стал постепенно уменьшаться, а 4 апреля пузырь исчез. К 5 апреля 80 тыс. человек из примерно 200 тыс. бежавших из района в дни, когда началась «стихийная эвакуация», вернулись в свои дома. Опасность катастрофы миновала.

Аварии могут возникать не только на АЭС, но и на других объектах, которые принято называть радиационно опасными.

Радиационно опасный объект - это объект, на котором хранят, перерабатывают, используют или транспортируют радиоактивные вещества, при аварии на котором или его разрушении может произойти облучение ионизирующим излучением или радиоактивное загрязнение людей, сельскохозяйственных животных и растений, объектов экономики, а также окружающей природной среды.

К радиационно опасным объектам относятся: АЭС, предприятия по изготовлению ядерного топлива, по переработке и захоронению радиоактивных отходов; научно-исследовательские и проектные организации, имеющие ядерные установки и стенды; транспортные ядерные энергетические установки; военные объекты.

В России создан значительный производственный и научно-технологический потенциал атомной энергетики. Функционируют: 10 атомных электростанций (АЭС) с ядерными энергетическими установками; атомные суда гражданского назначения с ядерными энергетическими установками; около 30 научно-исследовательских организаций с исследовательскими ядерными установками; региональные специальные комбинаты «Радон» по захоронению радиоактивных отходов и около 13 тыс. других предприятий и объектов, осуществляющих деятельность с использованием радиоактивных веществ и изделий на их основе.

Кроме того, при всех АЭС, предприятиях ядерно-топливного цикла и некоторых крупнейших научно-исследовательских организациях имеются хранилища жидких и твердых радиоактивных отходов, которые тоже представляют опасность.

Подтверждением этому является крупная авария, которая случилась 29 сентября 1957 г. на Южно-Уральском заводе по производству атомного оружия. Это был секретный объект, известный под названием «Челябинск-40». В 16.20 по московскому времени взорвалась одна из «банок вечного хранения», содержавшая 300 м 3 отходов ядерного производства. В результате взрыва в земле образовался кратер диаметром 30 м и глубиной 5 м. Радиоактивное облако поднялось на высоту 1000 м. Исходя из этих показателей, ученые предположили, что мощность взрыва соответствовала 70 т тринитротолуола.

При взрыве никто не погиб. Непосредственно сразу после аварии, в течение 7-10 дней, из близлежащих населенных пунктов было выселено 800 человек, в последующие полтора года - около 10 тыс. человек.

Взрыв разбросал радиоактивные элементы на территории, протянувшейся на 105 км в длину и 8-9 км в ширину. По счастью, он пришелся на места малонаселенные. Разовые дозы облучения для жителей тех деревень, что попали в зону выброса, были не опасными для здоровья.

Но загрязненными стали почва и водоемы, растущие здесь лес и трава. Почти все выпавшие радионуклиды относились к короткоживущим, период их полураспада составлял от месяца до года. Подробности этой катастрофы стали достоянием гласности лишь 32 года спустя после аварии.

Одна из важнейших проблем безопасного функционирования радиационно опасных объектов - обеспечение космических летательных аппаратов автономными базовыми источниками питания. Учеными созданы установки с непосредственным преобразованием ядерной энергии в электрическую, которые могут в случае аварии стать причиной чрезвычайной ситуации.

Такая ситуация имела место в 1978 г., когда спутник «Космос-954» с небольшим ядерным реактором на борту разрушился над территорией Канады. Площадь разброса радиоактивных осколков составила около 80 тыс. км 2 . На их поиск ушло около 8,5 месяца. Протяженность маршрутов наземной разведки составила около 55 тыс. км. Около 3000 часов было затрачено на воздушную разведку. В результате было обнаружено примерно 3000 радиоактивных осколков.

Аварии на всех радиационно опасных объектах приводят к попаданию радиоактивных веществ в окружающую среду и поражению населения. Ведущее место среди этих объектов занимают АЭС. Во-первых , это связано с тем, что в процессе их работы образуется много искусственных радиоактивных продуктов. Во-вторых , 9 из 10 (кроме Билибинской АЭС) российских АЭС расположены в густонаселенной европейской части страны. В 30-километровой зоне вокруг этих станций проживают более 4 млн человек.

Чернобыльская катастрофа показала всему миру, насколько масштабными по своим проявлениям могут быть последствия аварий на атомных станциях. Только в России загрязненными оказались 16 областей. В целом по Российской Федерации 7608 населенных пунктов с численностью населения около 3 млн человек отнесены к зонам радиоактивного загрязнения.

Характеристика очагов поражения при авариях на АЭС

Несмотря на разнообразие исходных причин аварий на объектах с ядерными компонентами, их можно условно объединить в три группы:

Отказ оборудования из-за несовершенства конструкции установки, нарушения в технологии ее изготовления, монтажа или эксплуатации;
- ошибочные действия персонала или преднамеренные нарушения правил эксплуатации;
- внешние события (падения самолетов, стихийные бедствия, воздействие различными видами оружия, террористические акты).

При авариях на АЭС с выбросом радиоактивных веществ образуются районы радиоактивного загрязнения местности в форме окружности (в районе аварии) и вытянутого эллипса (по «следу» облака): правильной формы при нормальных топографических и метеорологических условиях и неправильной - при сложных топографических и метеорологических условиях (пересеченная местность, изменения направлений и скоростей ветра и др.). В целях организации и проведения защитных мер районы радиационного загрязнения местности подразделяют на зоны:

Внешнего облучения: А - умеренного, Б - сильного, В - опасного, Г - чрезвычайно опасного;
- внутреннего облучения: Д" - опасного и Д - чрезвычайно опасного.

При авариях с разрушением реактора образуются все зоны облучения и наибольшую опасность представляет внешнее облучение.

При авариях без разрушения реактора образуются зоны Д" и Д внутреннего облучения и наибольшую опасность представляет внутреннее облучение щитовидной железы человека.

При авариях на радиационно опасных объектах различают четыре фазы: начальную, раннюю, среднюю и позднюю.

Начальная фаза аварии - период времени, предшествующий началу выброса (сброса) радиации в окружающую среду, или период обнаружения возможности облучения населения за пределами санитарно-защитной зоны предприятия. В отдельных случаях эту фазу не фиксируют из-за ее быстротечности.

Ранняя фаза аварии - период собственно выброса (сброса) радиоактивных веществ в окружающую среду, места проживания или размещения населения. Продолжительность этого периода может составлять от нескольких минут или часов в случае разового выброса (сброса) до нескольких суток в случае продолжительного выброса (сброса).

Средняя фаза аварии охватывает период, в течение которого нет дополнительного поступления радиоактивности из источника выброса (сброса) в окружающую среду. Средняя фаза может длиться от нескольких дней до года после аварии.

Поздняя фаза аварии (фаза восстановления) - период возврата к условиям нормальной жизнедеятельности населения. Он может длиться от нескольких недель до нескольких лет или десятилетий (в зависимости от мощности и радионуклидного состава выброса, характеристик и размеров загрязненного района, эффективности мер радиационной защиты), т. е. до прекращения необходимости в выполнении защитных мер.

Последствия радиационных аварий

Для аварий на радиационно опасных объектах характерен выброс радиоактивных продуктов в окружающую среду . Он приводит к радиационному загрязнению воздуха, воды, почвы и, следовательно, к облучению персонала объекта, а в некоторых случаях и населения (см. схему 11). При этом из атомных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Может произойти разлив жидкости, приводящий к радиоактивному загрязнению местности, водоемов.

Радиоактивные вещества имеют специфические свойства:

У них нет запаха, цвета, вкусовых качеств или других внешних признаков, из-за чего только приборы могут указать на заражение людей, животных, местности, воды, воздуха, предметов домашнего обихода, транспортных средств, продуктов питания;
- они способны вызывать поражение не только при непосредственном соприкосновении, но и на расстоянии (до сотен метров) от источника загрязнения;
- поражающие свойства радиоактивных веществ не могут быть уничтожены химическим и/или каким-либо другим способом, так как их радиоактивный распад не зависит от внешних факторов, а определяется периодом полураспада данного вещества.

Период полураспада - это время, в течение которого распадается половина всех атомов радиоактивного вещества. Период полураспада различных радиоактивных веществ колеблется в широких временных пределах.

При радиационной аварии происходит загрязнение продуктов питания, воды и водоемов, что влечет за собой возникновение у людей и животных различных форм лучевой болезни, тяжелых отравлений, инфекционных заболеваний.

В результате аварийного выброса радиоактивных веществ в атмосферу возможны виды радиационного воздействия на людей и животных, приведеиные на рисунке.


Особенности радиоактивного загрязнения (заражения) местности

Радиоактивное загрязнение при аварии на предприятии (объекте) ядерной энергетики имеет несколько особенностей:

Радиоактивные продукты легко проникают внутрь помещений, так большая часть их находится в парообразном или аэрозольном состоянии;
- наибольшую опасность представляет внутреннее облучение, обусловленное попаданием радиоактивных веществ внутрь организма;
- при большой продолжительности радиоактивного выброса, когда направление ветра может многократно меняться, возникает вероятность радиоактивного загрязнения местности практически во все стороны от источника аварии.

Рассмотрим характерные особенности радиоактивного загрязнения местности при авариях на АЭС в отличие от радиоактивного загрязнения местности при ядерных взрывах.

При наземном ядерном взрыве в его облако вовлекаются десятки тысяч тонн грунта. Радиоактивные частицы смешиваются с минеральной пылью, оплавляются и оседают на местности. Воздух загрязняется незначительно. Формирование следа радиоактивного облака завершается за несколько часов. За это время метеорологические условия, как правило, резко не изменяются, и след облака имеет конкретные геометрические размеры и очертания. В этом случае главную опасность для людей, оказавшихся на следе радиоактивного облака, представляет внешнее облучение (90-95% общей дозы облучения). Доза внутреннего облучения незначительна. Она обусловлена попаданием внутрь организма радиоактивных веществ через органы дыхания и с продуктами питания.

При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном или аэрозольном состоянии. Их выброс в атмосферу может продолжаться от нескольких суток до нескольких недель. Воздействие радиоактивного загрязнения окружающей среды на людей в первые часы и сутки после аварии определяется как внешним облучением от радиоактивного облака и радиоактивных выпадений на местности, так и внутренним облучением в результате вдыхания радионуклидов из облака выброса. В последующем в течение многих лет вредное воздействие и накопление дозы облучения у людей будет обусловлено вовлечением в биологическую цепочку выпавших радионуклидов и употреблением загрязненных продуктов питания и воды. Суммарную дозу облучения, прогнозируемую на 50 ближайших после аварии лет, в этом случае принято рассчитывать следующим образом: 15% -внешнее облучение, 85% - внутреннее облучение.

Характер поражения людей и животных.
Загрязнение сельскохозяйственных растений и продуктов питания

При авариях на ядерных энергетических установках сложно создать условия, полностью предохраняющие людей от облучения .

Однако, зная, что воздействие ионизирующих излучений на отдельные ткани и органы человека не одинаково, его можно значительно ослабить.

Итак, одни органы более чувствительны к воздействию ионизирующих излучений, другие - менее .

При сравнительно равномерном облучении организма ущерб здоровью определяют по уровню облучения всего тела, что соответствует первой группе критических органов.

К первой группе критических органов относят также половые органы и красный костный мозг.

Ко второй группе критических органов относят мышцы, щитовидную железу, жировую ткань, печень, почки, селезенку, желудочно-кишечный тракт, легкие, хрусталики глаз.

Третью группу критических органов составляют кожный покров, костная ткань, кисти рук, предплечья, голени и стопы.

При действиях на местности, загрязненной радиоактивными веществами, устанавливают определенные допустимые дозы облучения на тот или иной промежуток времени, которые, как правило, не должны вызывать у людей радиоактивных поражений.

Степень лучевых (радиационных) поражений зависит от полученной дозы излучения и времени , в течение которого человек ему подвергался. Не всякая доза облучения опасна. Если она не превышает 50 Р, то исключена даже потеря трудоспособности. Доза в 200-300 Р, полученная за короткий промежуток времени, может вызвать тяжелые радиационные поражения. Однако такая же доза, полученная в течение нескольких месяцев, не приведет к заболеванию: здоровый организм человека способен за это время вырабатывать новые клетки взамен погибших при облучении.

При определении допустимых доз облучения учитывают, что оно может быть однократным или многократным.

Однократным считают облучение, полученное за первые четверо суток. Оно может быть импульсивным (при воздействии проникающей радиации) или равномерным (при облучении на загрязненной местности).

Облучение, полученное за время, превышающее четверо суток, считают многократным.

Соблюдение установленных пределов допустимых доз облучения исключает возможность массовых радиационных поражений в зонах радиоактивного заражения местности. В табл. 9, 10 приведены возможные последствия острого однократного и многократного облучения организма человека в зависимости от полученной дозы.

Образовавшиеся в процессе аварии ядерной энергетической установки радиоактивные продукты в виде пыли, аэрозолей и других мельчайших частиц оседают на местности. Их разносит ветер, заражая все вокруг. Если запасы продовольствия окажутся не укрытыми или будет нарушена целостность их упаковки, то радиоактивные вещества загрязнят их. Радиоактивные вещества могут быть также занесены в пищу при ее обработке с зараженных поверхностей тары, кухонного инвентаря и оборудования, одежды и рук.

Радиоактивные вещества, попадающие на поверхность продуктов, если они не упакованы, или через щели и неплотности тары, проникают внутрь: в хлеб и сухари - на глубину пор; в сыпучие продукты (муку, крупу, сахарный песок, поваренную соль) - в поверхностные (10-15 мм) и нижележащие слои в зависимости от плотности продукта. Мясо, рыба, овощи и фрукты обычно загрязняются радиоактивной пылью (аэрозолями) с поверхности, к которой она весьма плотно прилипает. В жидких продуктах крупные частицы оседают на дно тары, а мелкие образуют взвеси.

Наибольшую опасность представляет попадание радиоактивных веществ внутрь организма с зараженной ими пищей и водой, причем поступление их в количествах более установленных величин вызывает лучевую болезнь. Поэтому в целях исключения опасного внутреннего облучения организма человека установлены допустимые пределы радиоактивного загрязнения продуктов питания и воды (табл. 11). Их соблюдение необходимо строго контролировать.

Примечание: удельная активность радионуклида - отношение активности радионуклида в образце к массе образца. Активность радионуклида в образце измеряют в кюри (Ки). 1 Ки = 3, 7 1010 ядерных превращений в секунду.

В настоящее время в нашей стране на многих объектах экономики, военных объектах, в научных центрах и на других предприятиях используются радиоактивные вещества. Отдельные системы, блоки и устройства этих объектов преобразуют энергию, получаемую в результате деления ядер урана и некоторых других тяжелых элементов, в электрическую и другие виды энергии (тепловую, механическую). Ряд предприятий используют радиоактивные вещества в технологических процессах или хранят их на своей территории. В России в настоящее время имеется 10 атомных электростанций (30 энергоблоков), 113 исследовательских ядерных установок, 12 промышленных предприятий топливного цикла, 9 атомных судов с объектами их обеспечения, а также 13 тыс. других предприятий и организаций, осуществляющих свою деятельность с использованием радиоактивных веществ и изделий на их основе. Все эти предприятия относятся к объектам с ядерными компонентами, но радиационно опасными из них являются не все. ЗАПОМНИТЕ!

Ионизирующее излучение создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков. Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором или при его разрушении может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды. Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ К радиационно опасным объектам относятся: предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов); атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС); объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями); ядерные боеприпасы и склады для их хранения. Предприятия ядерного топливного цикла осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов, переработку радиоактивных отходов, их хранение и окончательное размещение (захоронение). Наиболее характерным последствием аварий на предприятиях ядерного топливного цикла (возгорание горючих компонентов и радиоактивных материалов, появление течей и разрывов в резервуарах-хранилищах и др.) является выброс радиоактивных веществ в окружающую среду, который приведет к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. Атомная электростанция (АЭС) - это электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. Основными причинами аварий на АЭС могут быть нарушение технологической дисциплины оперативным персоналом станции и недостатки в его профессиональной подготовке, т. е. «человеческий фактор». Объекты с ядерными энергетическими установками делятся на корабельные объекты, войсковые атомные электростанции, космические ядерные электроустановки. Причинами аварий на этих установках могут служить разгерметизация первого контура реактора (первый контур находится внутри корпуса реактора) или механические повреждения реактора. Ядерные боеприпасы и взрывное устройство к ним в мирное время хранятся на складах в готовности к выдаче и боевому применению. Причинами возникновения аварийной ситуации с ядерными боеприпасами могут быть столкновение и опрокидывание транспортных средств при их транспортировке, пожары в сборочных помещениях и хранилищах. Максимальную опасность для населения и окружающей среды представляют аварии на атомных станциях.

ВНИМАНИЕ! Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимы. В настоящее время хорошо изучены последствия однократного облучения человека и выделено несколько степеней лучевого поражения. Последствия однократного общего облучения Острая лучевая болезнь легкой (I) степени развивается при кратковременном облучении всего тела в дозе, превышающей 100 бэр. Она сопровождается головокружением, редко - тошнотой, отмечается через 2-3 ч после облучения. Острая лучевая болезнь средней (II) степени развивается при воздействии ионизирующего излучения в дозе от 200 до 400 бэр. Первичная реакция (головная боль, тошнота, иногда рвота) возникает через 1-2 ч. Острая лучевая болезнь тяжелой (III) степени наблюдается при воздействии ионизирующего излучения в дозе 400-600 бэр. Первичная реакция возникает через 30-60 мин и резко выражена (повторная рвота, повышение температуры тела, головная боль). Острая лучевая болезнь крайне тяжелой (IV) степени отмечается при воздействии ионизирующего излучения в дозе более 600 бэр. Симптомы обусловлены глубоким поражением кроветворной системы, приобретают первостепенное значение поражения других органов (кишечника, кожи, головного мозга) и интоксикация (состояние организма, вызванное воздействием токсических веществ). Смертельные исходы практически неизбежны. Необходимо отметить, что при хроническом облучении потоками излучения малой дозы суммарные дозы могут быть большими. Наносимые организму повреждения частично могут восстанавливаться. Поэтому доза более 50 бэр, приводящая при однократном воздействии к болезненным явлениям, при хроническом облучении, растянутом, к примеру, на 10 лет, к тяжелым отклонениям в здоровье человека может не привести. Эти обстоятельства позволяют установить допустимые уровни облучения. Для того чтобы можно было количественно определить степень воздействия облучения на организм, было введено понятие эквивалентной дозы облучения, которую связывают со степенью ионизации вещества. Доза измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества. В системе СИ единицей эквивалентной дозы служит зиверт (Зв). 1 Зв = 100 бэр. (Заметим, что понятие дозы всегда определяется по отношению к единице массы или объема вещества.) Без ядерной энергетики человечеству, вероятно, не обойтись. Поэтому в настоящее время проводятся интенсивные исследования с целью повышения безопасности реакторов АЭС, усиления средств их защиты, в том числе и от ошибочных действий обслуживающего персонала, принимаются меры повышения уровня общей культуры в области безопасности у населения, проживающего в зонах АЭС. Обеспечение радиационной безопасности населения.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ В целях обеспечения радиационной защиты населения нашей страны в 1995 г. был принят Федеральный закон «О радиационной безопасности населения», в котором определилась политика государства в области радиационной безопасности населения в целях охраны его здоровья. В законе определены основные понятия, имеющие отношение к радиационной безопасности, которые необходимо знать, так как они касаются личной безопасности каждого. Приведем их: радиационная безопасность населения - это состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего облучения; естественный радиационный фон - это доза излучения, создаваемая космическим излучением и излучением природных радионуклидов, естественно распределенных в земле, воде, воздухе, других элементах биосферы, пищевых продуктах и организме человека; техногенно измененный радиационный фон - это естественный радиационный фон, измененный в результате деятельности человека; эффективная доза - это величина воздействия ионизирующего излучения, используемая как мера риска возникновения отдельных последствий облучения организма человека и отдельных его органов с учетом их радиочувствительности; санитарно-защитная зона - это территория вокруг источника ионизирующего излучения, на которой уровень облучения людей в условиях нормальной эксплуатации данного источника может превысить установленный предел дозы для населения. В санитарно-защитной зоне запрещается постоянное и временное проживание людей, вводится режим ограничения хозяйственной деятельности и проводится радиационный контроль; зона наблюдения - это территория за пределами санитарно-защитной зоны, на которой проводится радиационный контроль; радиационная авария - это потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неисправными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды. Нормами предусмотрено, что для населения средняя годовая эффективная доза равна 0,001 зиверта (0,1 бэр), или эффективная доза за период жизни (70 лет) - 0,07 зиверта (7 бэр). Для персонала ядерных объектов принята средняя годовая эффективная доза 0,02 зиверта (2 бэр), или эффективная доза за период трудовой деятельности (50 лет) - 1 зиверт (100 бэр). В законе также указано, что регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения. Указанные значения пределов доз облучения являются исходными при установлении допустимых уровней облучения организма человека и отдельных его органов. Мы живем в радиоактивном мире, так как живем на радиоактивной Земле. Все естественные источники излучений создают естественный радиационный фон, в котором мы рождаемся и живем на протяжении всей нашей жизни. К этому фону наш организм адаптировался. Общая эквивалентная доза от естественного облучения в среднем достигает примерно 0,002 Зв в год (0,2 бэр/ч). Радон - самый главный из всех естественных источников радиации. Этот газ без цвета, вкуса и запаха - один из продуктов распада урана-238. Он достаточно тяжелый (в 7,5 раза тяжелее воздуха). Главный источник поступления радона - грунт. Радон выделяется в основном из геологических разломов и шахт, но может содержаться в материале стен и даже питьевой воде. Добавку к естественному радиационному фону вносят техногенные источники, в том числе и радиационно опасные объекты.

ВНИМАНИЕ! В сумме эффекты от всех естественных и искусственных источников излучений в настоящее время в среднем составляют 0,25 бэр в год. Следовательно, все люди на Земле получают в среднем по 0,25 бэр в год. Это и принято за начальную точку отсчета при установлении допустимых уровней облучения организма человека.

ЭТО ДОЛЖЕН ЗНАТЬ КАЖДЫЙ Для обеспечения радиационной безопасности населения специалистами МЧС России разработаны рекомендации по правилам поведения населения, проживающего в непосредственной близости от радиационно опасных объектов.

1. При проживании в непосредственной близости от радиационно опасных объектов необходимо: уточнить наличие в районе вашего проживания радиационно опасных объектов и получить возможно более подробную и достоверную информацию о них; выяснить в ближайшем территориальном управлении ГО ЧС способы и средства оповещения населения при аварии на радиационно опасном объекте; изучить инструкцию о порядке действий населения в случае возникновения радиационной аварии; создать и иметь определенные запасы необходимых герметизирующих материалов, йодных препаратов, продовольствия и воды.

2. При получении сигнала оповещения о радиационной аварии Если вы находитесь на улице, немедленно защитите органы дыхания платком, шарфом и укройтесь в ближайшем здании, лучше в собственной квартире. Войдя в помещение, в коридоре следует снять с себя верхнюю одежду и обувь, поместить их в пластиковый пакет или пленку. Если вы находитесь в своем доме (квартире), немедленно закройте окна, двери, вентиляционные отверстия, включите радиоприемник или телевизор и будьте готовы к приему информации о дальнейших действиях. Обязательно загерметизируйте помещение и укройте продукты питания. Подручными средствами заделайте щели на окнах и дверях, заклейте вентиляционные отверстия. Открытые продукты поместите в полиэтиленовые мешки, пакеты или пленку. Продукты и воду поместите в холодильник или в закрываемые шкафы. При получении указаний через СМИ проведите йодную профилактику, принимая в течение 7 дней по одной таблетке (0,125 г) йодистого калия, а для детей до 2 лет ’/4 таблетки (0,04 г). При отсутствии йодистого калия можно использовать йодистый раствор: три-пять капель 5%-ного раствора йода на стакан воды, детям до 2 лет одну-две капли на 100 г воды. При приготовлении и приеме пищи все продукты, выдерживающие воздействие воды, промывайте струей воды. Строго соблюдайте правила личной гигиены, предотвращающие или значительно снижающие внутреннее облучение организма. Помещение оставляйте лишь в крайней необходимости и на короткое время. При выходе из помещения защитите органы дыхания, наденьте плащ, или накидку, или табельные средства защиты кожи. После возвращения переоденьтесь.

3. При подготовке к возможной эвакуации Подготовка к возможной эвакуации заключается в сборе самых необходимых вещей. Это документы, деньги, личные вещи, продукты, средства индивидуальной защиты, в том числе подручные - накидки, плащи, резиновые сапоги, перчатки и т. д. Необходимо сложить в чемодан и рюкзак одежду и обувь по сезону, однодневный запас продуктов, нижнее белье и другие необходимые вещи. Оберните чемодан (рюкзак) полиэтиленовой пленкой. Покидая при эвакуации квартиру, отключите все электро- и газовые приборы, вынесите в мусоросборник быстро портящиеся продукты, а на дверь прикрепите объявление «В квартире №___никого нет». При посадке в транспорт или при формировании пешей колонны, зарегистрируйтесь у председателя эвакокомиссии. Прибыв в безопасный район, примите душ и смените белье и обувь на незараженные.

4. Правила поведения при проживании на радиационно загрязненной местности При проживании на местности, степень радиационного загрязнения которой превышает фоновые нормы, но не выше опасных пределов установленных доз, необходимо придерживаться специального режима поведения, соблюдение которого в определенной степени может снизить риск дополнительного облучения.

Уборка помещения должна проводиться влажным способом с тщательным стиранием пыли с мебели и подоконников. Ковры, половики и другие тканевые покрытия не целесообразно вытряхивать, лучше чистить их влажной тряпкой или пылесосом.

Обувь, в которой ходили по улице, желательно ополаскивать водой (особенно подошву), затем протирать влажной тряпкой и оставлять ее за порогом квартиры (дома). Желательно, при наличии условий, оставлять вне квартиры (дома) и верхнюю одежду, в которой ходили по улице. М

усор из пылесоса и использованную при уборке ветошь необходимо сбрасывать в емкость, врытую в землю.

Территория двора должна периодически увлажняться.

При ведении приусадебного хозяйства для снижения радиоактивного загрязнения выращиваемых продуктов в почву целесообразно вносить известь, калийные удобрения и торф. Во время уборки урожая плоды, овощи и корнеплоды не складируют на землю.

Выращенные сельхозпродукты подвергаются радиационному контролю.

При установлении их загрязненности они промываются. Не рекомендуется употреблять в пищу рыбу и раков из местных водоемов, особенно мелких.

Заготовка дикорастущих ягод, грибов, лекарственных трав может проводиться по разрешению местных властей на территориях, определяемых по результатам проводимого радиационного контроля.

На открытой местности не раздевайтесь, не садитесь на землю и не курите; не купайтесь в открытых водоемах.

Воду употребляйте только из проверенных источников, а продукты питания - приобретенные в магазинах.

Тщательно мойте руки и полощите рот 0,5%-ным раствором питьевой соды.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Правила проведения йодной профилактики Урок для учащихся 8 класса

Радиация без вкуса, без цвета, без запаха определяется дозиметром анализом крови

Радиоактивные осадки выпадают в виде дождя, снега, пыли или пепла. Радиационные осадки

Характер поражения Удар РАДИАЦИИ по человеку ПРИВОДИТ К ЛУЧЕВОЙ БОЛЕЗНИ

Лучевая болезнь

Цель проведения йодной профилактики Защитить щитовидную железу препаратами стабильного йода от проникновения в щитовидную железу радиоактивного йода-131, т.к щитовидная железа управляет всеми железами внутренней секреции в организме человека.

Защитный эффект йодной профилактики Время приёма препаратов стабильного йода Фактор защиты За 6 часов до поступления в организм йода-131 в 100 раз Во время поступления в организм йода-131 в 90 раз Через 2 часа после разового поступления йода-131 в 10 раз Через 6 часов после разового поступления йода-131 в 2 раза

Возрастные категории Беременным йодную профилактику проводить нельзя. Опасно для плода! Грудным детям с молоком матери При искусственном вскармливании и детям до 2 лет йодная сетка на стопы, ладони, ягодицы Детям от2-14 лет 1-3 капли 5% раствора йода на 100 мл питательной жидкости, в день. 1раз в день 7дней йодовая сетка на стопы, ладони. Взрослым 3-5 капли 5% раствора йода На 100 мл питательной жидкости, в день. После еды 3раза в день.1раз в день 7дней йодовая сетка на стопы, ладони.

Препараты стабильного йода 5% спиртовой раствор йода С помощью аптекарской пипетки йод капают в стакан с питательной жидкостью в соответствии возрастным категориям 100 мл суточная доза Питательная жидкость: Молоко Кисель Сок Бульон Вода компот Недопустимо разводить йод: в спиртных газированных и кисломолочных напитках

Препараты стабильного йода Таблетки принимаем детям до 2 лет по1/2 таблетки (0,04), взрослвм по1 таблетке1 раз в день. Йодистого калия запивая молоком. В течение 7-8 дней, Но не более 10 дней Продаются в аптеке Индивидуальная аптечка АИ-2 Выдаётся населению санитарными постами из Штаба ГО города (района)

При радиационно-опасных авариях в облаке находится большое количество радиоактивного йода-131, период полураспада которого 8 дней. Поэтому проводить йодную профилактику необходимо в течение первых 8 дней, но не боле 10 дней. избыточное содержание йода в организме человека вредно для его здоровья. Длительность йодной профилактики Помните!

Постепенно уровень радиации на местности снижается примерно в 10 раз через отрезки времени кратные 7 (через 7 часов после выброса РОВ в 10 раз, а через 49 часов – почти в 100 раз). Если радиационный фон превышает допустимый уровень по истечении 10 дней, то принимается решение - ЭВАКУИРОВАТЬ население в чистую зону. Снижение уровня радиации


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча