26.05.2023

Какой тип онтогенеза характерен для людей. Онтогенез: типы и характеристика. Вопросы для повторения и задания


Онтогенез - индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). У видов, размножающихся половым путем, он начинается с оплодотворения яйцеклетки. У видов с бесполым размножением онтогенез начинается с обособления одной или группы клеток материнского организма. У прокариот и одноклеточных эукариотических организмов онтогенез представляет собой, по сути, клеточный цикл, обычно завершающийся делением или гибелью клетки.

Онтогенез есть процесс реализации наследственной информации особи в определенных условиях среды.

Различают два основных типа онтогенеза:

  • прямой,
  • непрямой.

При прямом типе развития рождающийся организм в основном сходен со взрослым, а стадия метаморфоза отсутствует. При непрямом типе развития образуется личинка, отличающаяся от взрослого организма внешним и внутренним строением, а также по характеру питания, способу передвижения и ряду других особенностей. Во взрослую особь личинка превращается в результате метаморфоза . Непрямое развитие дает организмам значительные преимущества. Непрямое развитие встречается в личиночной форме, прямое - в неличиночной и внутриутробной.

В зависимости от особенностей метаморфоза непрямой (личиночный) тип развития может быть:

  • с неполным превращением;
  • с полным превращением.

При развитии с неполным превращением личинка постепенно утрачивает временные личиночные органы и приобретает постоянные, характерные для взрослой особи (например, кузнечики).

При развитии с полным превращением личинка сначала превращается в неподвижную куколку, из которой выходит взрослый организм совершенно непохожий наличнику (например, бабочки).

Прямой неличиночный (яйцекладный) тип развития имеет место у ряда беспозвоночных, а также у рыб, пресмыкающихся, птиц и некоторых млекопитающих, яйца которых богаты желтком. При этом зародыш длительное время развивается внутри яйца. Основные жизненные функции у таких зародышей осуществляются специальными провизорными органами - зародышевыми оболочками.

Прямой внутриутробный тип развития характерен для высших млекопитающих и человека, яйцеклетки которых почти лишены желтка. Все жизненные функции зародыша осуществляются через материнский организм. Для этого из тканей матери и зародыша развивается сложный провизорный орган - плацента . Завершается этот тип развития процессом деторождения.

Онтогенез многоклеточных организмов подразделяют на периоды:

  • эмбриональный (развитие зародыша)
  • постэмбриональный (послезародышевое развитие).

Для плацентарных животных различают:

  • пренатальный (до рождения),
  • постнатальный (после рождения) периоды.

Нередко выделяют также проэмбриональныйпериод (сперматогенез и оогенез).

Онтогенез, его типы и периоды.

Онтогенез (греч. ontos – существо, genesis – развитие) – полный цикл индивидуального развития каждой особи, в основе которого лежит реализация наследственной информации на всех стадиях существования в определенных условиях внешней среды. Он начинается образованием зиготы и заканчивается смертью особи. Онтогенез обусловлен длительным процессом филогенетического развития каждого вида. Взаимная связь индивидуального и исторического развития отражена в биогенетическом законе (Ч. Дарвин, Ф.Мюллер, Э. Геккель), а позднее – в учении А.Н. Северцова о филэмбриогенезах.

Первые сведения о строении зародышей человека и животных были получены еще учеными древности – Аристотелем и Гиппократом. Но систематическое изучение эмбрионального развития началось в XVII веке после описания Уильямом Гарвеем (1578-1657) и Марчело Мальпиги (1628‑1694) строения зародышей некоторых животных и птиц.

Развитие учения об онтогенезе включает 3 периода: преформизм, эпигенез, современное представление о развитии зародыша.

Преформизм. Гиппократ полагал, что в яйцеклетке или в теле матери должен находиться маленький, полностью сформированный организм. Эти убеждения позже легли в учение, с метафизическими представлениями о том, что в процессе развития имеются только количественные изменения (рост), и нет качественных изменений (возникновение нового). Преформисты, считавшие, что зародыш преформирован в яйце, получили название овистов (лат. ovum – яйцо). Преформистов, считавших, что зародыш заложен в мужской гамете, называли анималькулистами (лат. animalculum – маленькое животное).

Преформист Ш. Бонне (1720-1790), стремившийся согласовать данные науки и религии, выступил с "теорией вложения". По его представлению, в яичниках "созданной богом первородной женщины Евы" находились все последующие поколения людей, последовательно вложенные друг в друга.

Эпигенез. Противоположные взгляды, согласно которым организм развивается из бесструктурной, гомогенной массы, впервые высказанные Аристотелем. Развитие эпигенетических воззрений связано с работами Каспара Вольфа (1733-1794). Эмбриологические исследования развивающегося зародыша курицы убедили его, что в яйце нет преформированных частей будущего организма, а яйцо первоначально представляет собой однородную массу. В 1828г исследованиями Карла Бэра (1792-1876) была показана несостоятельность, как преформизма, так и чистого эпигенеза. К. Бэр установил, что содержимое яйцеклетки неоднородно и степень структурированности увеличивается по мере развития зародыша в оплодотворенном яйце.

Современное понимание развития зародыша отвергает взгляды как преформистов, так и эпигенетиков. Представление, что развитие – это простое развертывание предшествующих зачатков, ненаучно. Исследованиями эмбриологов доказано, что в процессе развития происходит новообразование тканей и органов. Развитие идет от простого к сложному. Взрослый организм с его системами органов несравнимо сложнее яйцеклетки. Строго определенный путь развития яйца детерминирован наследственными факторами – генами ядра зиготы.

Существуют следующие основные типы онтогенеза: непрямой и прямой. Непрямое развитие –это развитие (метаморфоз) с полным или неполным превращением. Личиночный тип развития, встречается у видов, яйца которых бедны желтком. Для осуществления жизненных функций у личинок имеется ряд провизорных (временных) органов, отсутствующих во взрослом состоянии.

Прямой тип развития в яйце характерен для рыб, пресмыкающихся, птиц, а также беспозвоночных, яйца которых богаты питательным материалом (желтком), достаточным для завершения онтогенеза. Питание, дыхание и выделение у этих зародышей осуществляется развивающимися у них провизорными органами.

Прямой тип развития, в нутриутробный – характерен для высших млекопитающих и человека. Яйцеклетки при этом типе развития почти не содержат питательного материала. Все жизненные функции зародыша осуществляются через материнский организм. В связи с этим, из тканей матери и зародыша образуются сложные провизорные органы, в первую очередь плацента. Этот наиболее поздний в филогенетическом отношении тип онтогенеза наилучшим образом обеспечивает выживание зародыша, но новорожденные существа нуждаются во вскармливании секретом молочных желез – молоком.

Онтогенез делят на два периода развития: эмбриональный (пренатальный) и постэмбриональный (постнатальный).

Эмбриональный период, его характеристика. Генный контроль эмбрионального развития.

Эмбриональный период (эмбриогенез) начинается с момента проникновения сперматозоида в яйцеклетку, т.е. образования зиготы и заканчивается выходом нового организма из яйцевых оболочек или моментом рождения.

В эмбриогенезе различают периоды: предзиготный, зиготный, дробление, гаструляцию, гисто- и органогенез.

Предзиготный период характеризуется процессами:

    гаметогенез – образование гамет;

    амплификация генов – синтез и запасание р-РНК и и-РНК в яйце;

    ооплазматическая сегрегация – дифференцировка кортекса цитоплазмы на зоны;

    образование кортикального слоя цитоплазмы, содержащего гранулы гликогена;

    яйцо приобретает полярность формируются: вегетативный, отягощенный желтком, и анимальный полюса.

Процесс оплодотворения у многоклеточных организмов состоит в объединении спермия и яйцеклетки и образовании качественно новой клетки – зиготы. Зигота это одноклеточный зародыш. На этой стадии геном не активен.

Следующий этап – дробление зиготы (Рис. 8).

Рис. 8 - Основные типы дробления

В основе этого процесса лежит митотическое деление клеток. Однако образующиеся в результате деления дочерние клетки не расходятся, а остаются тесно прилегающими друг к другу. В процессе дробления дочерние клетки прогрессивно уменьшаются. Каждому животному свойствен определенный тип дробления, обусловленный количеством и характером распределения желтка в яйцеклетке. Желток тормозит дробление, поэтому часть зиготы, перегруженная желтком, дробится медленнее или не дробится вовсе.

В изолецитальном, бедном желтком оплодотворенном яйце ланцетника, первая борозда дробления в виде щели начинается на анимальном полюсе и постепенно распространяется в продольном меридиональном направлении к вегетативному, разделяя яйцо на 2 клетки – 2 бластомера. Вторая борозда также проходит меридиональном направлении, но перпендикулярно первой – образуются 4 бластомера. Третья борозда проходит экваториально: возникает 8 бластомеров. В результате последующих дроблений в меридиональных и экваториальных плоскостях образуется 16, 32, 64 и т.д. бластомеров.

В результате ряда последовательных дроблений формируются группы клеток, тесно прилегающих друг к другу. У некоторых животных такой зародыш напоминает ягоду шелковицы или малины. Он получил название морулы (лат. morum – тутовая ягода) – многоклеточного шара без полости внутри.

В телолецитальных яйцах, перегруженных желтком, дробление может быть полным равномерным или неравномерным и неполным. Бластомеры вегетативного полюса из-за обилия инертного желтка всегда отстают в темпе дробления от бластомеров анимального полюса. Полное, но неравномерное дробление характерно для яиц амфибий. У рыб, птиц и некоторых других животных дробится лишь часть яйца, расположенная на анимальном полюсе; происходит неполное дискоидальное дробление.

В процессе дробления увеличивается число бластомеров, однако бластомеры не вырастают до размеров исходной клетки, а с каждым дроблением становятся мельче. Это объясняется тем, что митотические циклы дробящейся зиготы не имеют типичной интерфазы; пресинтетический период (G 1) отсутствует, а синтетический (S) начинается еще в телофазе предшествующего митоза. Во время дробления митозы следуют быстро друг за другом, и к концу периода весь зародыш лишь не намного крупнее зиготы. В это время бластомеры уже отличаются по характеру цитоплазмы, по содержанию желтка, размерам, что влияет на их дальнейшее развитие и дифференцировку.

Дробление яйца заканчивается образованием бластулы.

Бластула это многоклеточный однослойный зародыш.

В клетках бластулы устанавливается типичное для каждого вида животных ядерно-плазматическое соотношение. Начиная с бластулы, клетки зародыша называют эмбриональными клетками. У ланцетника бластула образуется по достижении зародышем 128 клеток. В силу накопления продуктов жизнедеятельности бластомеров между ними появляется полость (бластоцель, или первичная полость). При полном равномерном дроблении (как у ланцетника) бластула имеет форму пузырька со стенкой в один слой клеток, который назван бластодермой. Стадию бластулы проходят зародыши всех типов животных.

У млекопитающих дробление полное неравномерное, т.к. желтка в яйцах мало. В различных бластомерах оно идет с разным ритмом, и можно наблюдать стадии 2, 3, 6, 7, 9, 10 и т.д. бластомеров. Одни из них (светлые) располагаются по периферии, другие (темные) находятся в центре. Из светлых клеток образуется окружающий зародыш трофобласт, клетки которого выполняют вспомогательную функцию и непосредственно в формировании тела зародыша не участвуют. Клетки трофобласта обладают:

    способностью растворять ткани, благодаря чему зародыш внедряется в стенку матки;

    отслаиваются от клеток зародыша, образуя полый пузырек. Полость трофобласта заполняется жидкостью, диффундирующей в нее из тканей матки. Зародыш в это время имеет вид узелка, расположенного на внутренней стенке трофобласта. В результате дальнейшего дробления зародыш принимает форму диска, распластанного на внутренней поверхности трофобласта.

Типы бластул зависят от типа дробления (Рис. 9).

Бластула:

Рис. 9 - Зависимость типов бластул от дробления

У всех многоклеточных животных следующим за бластулой этапом развития является гаструляция , которая представляет собой процесс перемещения эмбрионального материала с образованием двух или трех слоев тела зародыш, называемых зародышевыми листками. В процессе гаструляции следует различать два этапа:

1) образование экто- и энтодермы – двухслойный зародыш;

2) образование мезодермы – трехслойный зародыш.

У животных с изолецитальным типом яиц гаструляция идет путем инвагинации, т.е. впячивания. Вегетативный полюс бластулы впячивается внутрь. Противоположные полюса бластодермы почти смыкаются, так что бластоцель либо исчезает полностью, либо остается в виде незначительной полости, а из шара возникает двухслойный зародыш.

Внешний слой клеток носит название эктодермы . Внутренний слой называется энтодерма . Формирующаяся полость называется гастроцелем , или первичной кишкой, а вход в кишку получил наименование бластопора , или первичного рта. Края его сближаются, образуя верхнюю и нижнюю губы. У первичноротых, к которым относится большинство типов беспозвоночных, бластопор превращается в окончательный рот, у вторичноротых (иглокожих и хордовых) из него формируется анальное отверстие либо он зарастает, а рот образуется на противоположном конце тела.

Другими способами гаструляции являются: деляминация, эпиболия, иммиграция и смешанный способ.

При деляминации клетки зародыша делятся параллельно его поверхности, образуя наружный и внутренний зародышевый листки.

Эпиболия встречается у животных, имеющих телолецитальные яйца. При этом способе гаструляции мелкие клетки анимального полюса обрастают и покрывают снаружи крупные, богатые желтком клетки вегетативного полюса, которые становятся внутренним слоем.

Образование гаструлы путем иммиграции характерно для кишечнополостных животных. Этот способ заключается в массовом активном перемещении клеток бластодермы в бластоцель.

Чаще всего имеет место смешанный тип гаструляции, когда одновременно проходят и впячивание, и обрастание, и миграция. Так протекает, например, гаструляция у земноводных.

На стадии двух зародышевых листков заканчивается развитие губок и кишечнополостных. У всех организмов, относящихся к типам, стоящим на более высоких ступенях эволюции, развиваются три зародышевых листка.

Третий, или средний зародышевый листок называется мезодермой , так как он образуется между наружным и внутренним листками.

Различают два основных способа образования мезодермы телобластический и энтероцельный.

Телобластический способ встречается у многих беспозвоночных. Заключается он в том, что вблизи бластопора с двух сторон первичной кишки во время гаструляции образуется по одной крупной клетке телобласту. В результате размножения телобластов формируется мезодерма.

Энтероцельный способ характерен для хордовых. В этом случае с двух сторон от первичной кишки образуются выпячивания – карманы, или целомические мешки. Внутри карманов находится полость, представляющая собой продолжение первичной кишки – гастроцеля. Целомические мешки полностью отшнуровываются от первичной кишки и разрастаются между экто- и энтодермой. Клеточный материал этих участков дает начало мезодерме. Дорсальный отдел мезодермы, лежащий по бокам от нервной трубки и хорды, расчленен на сегменты – сомиты. Вентральный ее отдел образует сплошную боковую пластинку, находящуюся по бокам кишечной трубки. Сомиты дифференцируются на три отдела: медиальный – склеротом, центральный – миотом и латеральный – дерматом. В вентральной части мезодермальной закладки принято различать нефрогонотом (ножка сомита) и спланхнотом. Закладка спланхнотома разделяется на два листка, между которыми образуется полость. Она называется вторичной полостью, или целомом. Висцеральный листок граничит с энтодермальной кишечной трубкой, а париентальный – лежит непосредственно под эктодермой.

Гистогенез – процесс образования тканей.

Органогенез – формирование органов.

Дифференцированный на три эмбриональных листка зародышевый материал дает начало всем тканям и органам.

Из эктодермы развиваются ткани нервной системы, которая очень рано обособляется. У хордовых она первоначально имеет форму нервной пластинки. Эта пластинка растет интенсивнее остальных участков эктодермы и затем прогибается, образуя желобок. Размножение клеток продолжается, края желобка смыкаются, возникает нервная трубка, которая тянется вдоль тела от переднего конца к заднему. На переднем конце нервной трубки путем дальнейшего роста и дифференцировки формируется головной мозг. Отростки нервных клеток центральных отделов нервной системы образуют периферические нервы. Кроме того, из эктодермы развиваются наружный покров кожи – эпидермис и его производные (ногти, волосы, сальные и потовые железы, эмаль зубов, воспринимающие клетки органов зрения, слуха, обоняния и т.п.).

Из энтодермы развивается эпителиальная ткань, выстилающая органы дыхательной, частично мочеполовой и пищеварительной систем, в том числе печень и поджелудочную железу.

Из мезодермы: м иотом дает начало скелетной мускулатуре, нефрогонотом – органам выделения и половым железам (гонадам). Клетки, образующие висцеральные и париетальные листки спланхнотома, являются источником эпителиальной выстилки вторичной полости тела – целома. За счет элементов склеротома развиваются хрящевая, костная и соединительная ткани внутренних органов, кровеносных сосудов, гладкой мускулатуры кишок, дыхательных и мочеполовых путей. В образовании сердца принимает участие также висцеральный листок спланхнотома. Дерматом дает начало соединительной ткани кожи.

Железы внутренней секреции имеют различное происхождение: одни из них (эпифиз, часть гипофиза) развиваются из закладок нервной системы, другие – из эктодермы. Надпочечники и половые железы являются производными мезодермы.

Органогенез. В этой стадии можно выделить две фазы.

Первая – нейруляция, состоит в образовании комплекса осевых органов: нервной трубки, хорды и кишечника. Зародыш на стадии нейруляции называется нейрулой. Нервная трубка образуется в результате опускания пласта клеток эктодермы, образования вначале нервного желобка, края которого затем смыкаются. Передний, расширенный отдел в дальнейшем развитии образует головной мозг, остальная часть нервной трубки спинной мозг.

Отличительной чертой первой фазы органогенеза служит то, что в морфологические перестройки, сопровождающиеся формированием центральной нервной системы, вовлекается почти весь зародыш.

Вторая фаза заключается в построении остальных органов, приобретении различными участками тела типичной для них формы и черт внутренней организации, установлении определенных пропорций. Развитие других органов представляет собой пространственно ограниченные процессы.

Образование хорды по времени соответствует самым ранним этапам нейруляции и происходит путем обособления по средней линии клеточного материала из зачатка, общего с энтодермой и мезодермой – стенки первичной кишки.

Органогенез завершается в основном к концу эмбрионального периода развития. Однако дифференцировка и усложнение органов продолжается и в постэмбриональном онтогенезе. Описанные процессы связаны не только с активным клеточным размножением первичных эмбриональных закладок, но и с их значительным перемещением, изменением формы тела зародыша, образованием отверстий и полостей, а также с формированием ряда временных зародышевых (провизорных) органов.

Провизорные органы. Назначение провизорных органов – обеспечение жизненных функций зародыша в разнообразных условиях среды.

Эмбриональное развитие организмов с разным типом онтогенеза протекает в различных условиях. Во всех случаях развития необходимая связь зародыша со средой обеспечивается специальными внезародышевыми органами, функционирующими временно и называемыми провизорными. Степень развития и функция этих органов различны. Для всех животных с неличиночным типом развития, яйца которых богаты желтком (рыбы, рептилии, птицы), характерен такой провизорный орган, как желточный мешок.

В стенки желточного мешка врастают кровеносные сосуды, образующие по всей поверхности желтка густую капиллярную сеть. Клетки стенки желточного мешка выделяют ферменты, расщепляющие питательные вещества желтка, которые поступают в кровеносные капилляры и далее в организм зародыша. Желточный мешок – это также первый кроветворный орган зародыша, место размножения клеток крови. У млекопитающих редуцированный желточный мешок входит в состав пупочного канатика.

Амнион развивается у истинно наземных животных. Амнион осуществляет функции обмена и защиты от высыхания и механических воздействий. Амниотическая жидкость, в которую погружен развивающийся эмбрион, представляет собой водный раствор белков, сахаров, минеральных солей, содержит также гормоны и мочевину. В процессе развития состав этой среды изменяется. В акушерской практике амниотическую жидкость, отходящую перед родами, называют водами.

Позвоночные, обладающие амнионом (пресмыкающиеся, птицы и млекопитающие), объединяются в группу высших позвоночных, или амниотов. Низшие позвоночные, не имеющие амниона (круглоротые, рыбы и земноводные), составляют группу анамний .

Аллантоис – вырост задней кишки зародыша. Наиболее развит у животных развивающихся в яйце – рептилии и птицы, где служит местом накопления азотистых отходов метаболизма. Аллантоис сливается с хорионом и образуется хорион-аллантоисная оболочка, богатая кровеносными сосудами, через которую эмбрион поглощает кислород, отдает углекислоту и продукты обмена.

Хорион или ворсинчатая оболочка выполняет функцию наружной зародышевой оболочки. Названа она так вследствие развития на ее поверхности большого числа выростов, ворсинок. Ворсинки хориона врастают в слизистую оболочку матки. Место наибольшего разветвления ворсинок хориона и наиболее тесного контакта их со слизистой оболочкой матки носит название детского места или плаценты.

У млекопитающих и человека яйцеклетка бедна желтком, поэтому провизорные приспособления развивающегося организма имеют свои особенности. Желточный мешок закладывается на ранних этапах эмбриогенеза, но не развивается, а постепенно редуцируется, расслаивается. Аллантоис также не развит. Зачаток его входит в состав нового специфического провизорного органа – пупочного канатика.

Генный контроль эмбрионального развития . Основу процесса онтогенеза составляет наследственная информация, получаемая от родителей. Ее реализация зависит от условий внешней и внутренней среды. Общая схема онтогенетических процессов включает три этапа:

    Информация для экспрессии и репрессии генов. Гены получают информацию от соседних клеток, продуктов метаболизма, гормонов и других факторов для своей активации.

    Информация от генов в ходе процессов транскрипции и трансляции для синтеза полипептидов.

    Информация от белков для формирования тканей и органов.

В течение онтогенеза в будущей яйцеклетке (овоцитах) происходит синтез р-РНК, рибосом, т-РНК, необходимых для начального периода развития (дробление, образование бластулы). Происходит амплификация генов (умножение) р-РНК в цитоплазме, и-РНК. Хромосомы при этом имеют вид «ламповых щеток». На этих петлях происходит синтез и-РНК. Гены р‑РНК используются для синтеза белковых молекул рибосом клетки. Гены и-РНК используются для трансляции в течение длительного времени (запасаются). Гены сперматозоида при этом не функционируют. За счет функции плазмогенов плазмотипа наблюдается дифференцировка кортекса цитоплазмы яйцеклетки на зоны (ооплазматическая сегрегация). При оплодотворении, вносится геном сперматозоида в яйцеклетку. Генотип зиготы не активен за счет полной репрессии генов. Функция плазмогенов плазмотипа вызывает усиление дифференцировки кортекса на зоны.

Дробление регулируется на первых порах исключительно информацией, содержащейся в яйце. Запасание в ооцитах и-РНК обеспечивает активный синтез белка. Геном матери и отца в этот период не транскрибируется.

На стадии бластулы активизируется геном сперматозоида. Генетическая информация бластомеров обеспечивает синтез белков. Вплоть до поздней бластулы реализуется та часть генетической информации, которая касается общих метаболических процессов для всех делящихся клеток. Затем наблюдается репрессия тканеспецифических генов, т.е. дифференцировка клеток зародыша.

Гаструляция контролируется за счет генетической информации эмбриональных клеток. Функционирование определенных генов по принципу экспрессии и репрессии обеспечивает синтез белков и закладку зародышевых листков эмбриона.

Гисто- и органогенез обеспечивается за счет генной информации клеток эмбриона. В этот период обосабливаются стволовые клетки. Разные популяции которых дают начало различным органам и тканям. Процесс контролируется функцией определенных генов по принципу экспрессии и репрессии.

В ходе развития устанавливаются индукционные отношения между тканями и органами, т.е. влияние одной ткани на другую, направляющее ее развитие. Так, зачаток хорды контактирует с эктодермой, в результате чего эпидермальные клетки дифференцируются не в эпителий кожи, а в нервную трубку. Это явление называется эмбриональной индукцией.

Предполагается, продукты деятельности генов клеток, зачатки хорды активируют деятельность участков хромосом клеток энтодермы, которые определяют развитие нервной системы.

Формированием фенотипа зависит от реализации наследственной программы в конкретных условиях среды.

Внутриутробное развитие человека. Критические периоды развития, тератогенные факторы среды (физические, химические, биологические). Нарушение эмбриогенеза человека.

Эмбриогенез человека делят на 3 периода:

    начальный период – 1-ая неделя;

    зародышевый – 2-8 неделя;

    плодный – с 9 недели и до рождения.

После оплодотворения зигота в течение трех дней перемещается по маточной трубе, находясь на стадии дробления. На четвертые сутки образуется бластоциста. На седьмые – наблюдается имплантация бластоцисты в слизистую матки. На стадии зародышевого периода на вентральной стороне зародышевого диска различима энтодерма в виде тонкого слоя клеток, появляется полость амниона. Питание зародыша – диффузное. На 14 сутки происходит плацентация . На 16 сутки происходит формирование зародышевой мезодермы, с 16-21 суток наблюдается формирование нервной трубки (гисто-, органогенез).

Зачатки рук и ног, завершение развития сердца наблюдаются на 3 неделе внутриутробного развития.

Формирование головного мозга происходит на 6 неделе. Полная закладка всех систем органов наблюдается в конце 8 недели, в этот период размеры эмбриона достигают 40 мм, масса – 5 грамм. С 9 недели начинается плодный период, завершающийся рождением.

Критические периоды – периоды, когда зародыш наиболее чувствителен к повреждениям разнообразными факторами, нарушающими нормальное развитие. В критические периоды у зародышей сильно изменяется метаболизм, усиливается дыхание, меняется содержание РНК. Различают критические периоды в развитии отдельных органов и общие для всего организма. Критические периоды совпадают с активной морфологической дифференцировкой, с преходом от одного перида развития к другому. В отношении развития человека подчеркивается значение следующих критических периодов: имплантация, плацентация, гисто- и органогенез, роды.

Воздействие на организм матери во время беременности различных тератогенных агентов: физических, химических, биологических, может вызвать нарушение развития эмбриона, возникновение уродства или мертворождение.

Тератогенными факторами являются: хинин, алкоголь, кофеин, простейшие (токсоплазма), вирусы (краснуха), лекарственные препараты (талидомид, гормоны), ионизирующие излучения.

Постэмбриональное развитие, его периодизация. Генный контроль постэмбрионального развития.

Постэмбриональное развитие – это этап онтогенеза, начинающийся моментом выхода зародыша из яйцевых оболочек или рождением и заканчивающийся смертью организма. Встречается два вида постэмбрионального развития: прямое и непрямое.

При прямом развитии, постэмбриональный онтогенез делят на три периода: дорепродуктивный, репродуктивный и пострепродуктивный.

Дорепродуктивный период при прямом развитии называют еще периодом роста и формообразования. Он характеризуется продолжением начинающегося еще в эмбриональной жизни органогенеза и увеличения размеров тела. Новорожденные отличаются размерами, а также созреванием ряда органов и пропорциями тела. К началу этого периода все органы достигают той степени дифференцировки, при которой организм может существовать и развиваться вне организма матери или вне яйцевых оболочек. С этого момента начинают функционировать пищеварительный тракт, органы дыхания и органы чувств. Нервная, кровеносная и выделительная системы начинают свою функцию еще у зародыша. В течение дорепродуктивного периода окончательно складываются видовые и индивидуальные особенности организма, и особь достигает характерных размеров.

Позже других органов дифференцируется половой аппарат. Когда заканчивается его формирование, наступает второй период постнатального онтогенеза – репродуктивный период или период зрелости, во время которого происходит размножение. Продолжительность второго периода у некоторых видов (поденка, тутовый шелкопряд) длится несколько суток, у других – много лет (млекопитающие, человек).

После репродуктивного периода наступает пострепродуктивный период или период старости. Старость – закономерно и неизбежно наступающий заключительный период онтогенеза. Наступление старости связано со старением организма.

После рождения у человека выделяют периоды (условно):

новорожденный - до 10 дней

грудной - до 1 года

детский - до 11-12 лет дорепродуктивный

подростковый - до 15-16 лет

юношеский - до 20-21 год

зрелый - до 55-60 лет репродуктивный

пожилой - до 74 лет пострепродуктивный

старческий - до 90 лет

Детский возраст – период продолжающегося развития и совершенствования функций. Продолжается развитие скелета и его окостенение, мышечной массы, совершенствуется координация движений. Позвоночник сохраняет гибкость, что при неправильном физическом воспитании может привести к деформации. Отмечается высокий уровень обмена веществ и энергии, равномерное физическое развитие. Органы чувств достигают совершенства. Нервные процессы характеризуются силой и уравновешенностью. Хорошо выражены все виды торможения. Однако еще затруднено выполнение мелких и точных движений, активное внимание, сосредоточенность, развивается быстрое утомление, сопровождающееся невротическими нарушениями.

Подростковый – период бурного преобразования организма. Активность гипоталамо-гипофизарной системы обеспечивает процессы полового созревания, формирование вторичных половых признаков, интенсивное развитие всех физиологических систем, завершается развитие скелета, совершенствуется координация движений. Усиливаются подкорковые влияния, регулирующая деятельность коры ослабляется. Происходящие сдвиги гормональной системы и несовершенство нервной регуляции могут быть причиной различных вегетативных нарушений. Происходит формирование характера и личности. Этот возраст характеризует эмоциональность, возбудимость, сниженная работоспособность и утомляемость.

В юношеском возрасте – завершается формирование всех органов и систем организма. Устанавливается гормональный баланс, что благоприятствует работе нервной системы. Возрастает роль коры в регуляции всех функций, усиливаются процессы торможения. Завершается процесс формирования эмоций, самосознания. Прекращается рост, наступает период половой зрелости. Возрастает умственная и физическая работоспособность.

Наиболее характерная черта онтогенеза – рост. Рост – это процесс, сопровождающийся увеличением количества клеток и накоплением массы внеклеточных образований, обусловленный обменом веществ. Масса тела увеличивается до тех пор, пока скорость ассимиляции выше скорости диссимиляции.

Постнатальный рост, в основном, сводится к развитию и увеличению уже существующих клеток, а не образованию новых. Исключение составляет жировая ткань. Число жировых клеток способно постоянно увеличиваться вплоть до пубертатного периода (13-15 лет).

СХЕМА ТИПОВ РОСТА

генотип рост факторы среды

неопределенный определенный

В течении жизни - до определенного возраста

моллюски, рыбы, рептилии насекомые, птицы, млекопитающие

Константы роста человека в год:

1) 1 год жизни – 1,3;

2) от 1 до 12 – 0,7;

3) половое созревание (12-16 лет) – 1,6;

4) после 16 лет – 0,6.

Самый интенсивный рост наблюдается на 1 году жизни (23-25 см), на втором году 10-11 см, на третьем – 8 см, с 4 до 7 лет – годичный прирост 5‑7 см, с 11-12 лет у девочек, а у мальчиков до 16 лет наблюдается всплеск – 7-8 см в год.

Все ткани и системы органов растут неравномерно.

1. Общий тип тканей: в целом тело, органы дыхания, мышцы, кости. Пик активности – в первый год жизни и период полового созревания.

2. Лимфоидный тип. Интенсивный рост ткани до 12 лет. К 20 годам – ее количество значительно снижается.

3. Мозговой тип. Интенсивно развивается к 10-12 годам и достигает размеров мозга взрослого человека.

4. Репродуктивный тип. Почти нет роста до периода полового созревания, а затем наблюдается быстрый темп.

Исследованиями Ч. Майнота, И.И. Шмальгаузена изучена зависимость роста от дифференцировки тканей организма. Установлено, что эмбриональные и малодифференцированные ткани растут быстрее дифференцированных. С возрастом количество первых прогрессивно уменьшается, что и приводит к падению интенсивности роста. И.И. Шмальгаузен придал этой закономерности математическое выражение:

Cv · t = const,

где: Cv – интенсивность роста; t – возраст.

Факторы роста бывают экзо- и эндогенные.

Экзогенные факторы это: питание, витамины, свет.

Для нормального развития необходимо нормальное питание, наличие витаминов и воздействие солнечного света. Витамин А оказывает влияние на остроту зрения (входит в состав родопсина), развитие эпителия, рост организма. Витамин Д регулирует обмен кальция и фосфора. Витамин Е влияет на гаметогенез, С – на рост организма, прочность сосудистых стенок, витамины В 1 и В 6 – на нервную систему, В 2 и РР – на развитие слизистых оболочек, кожу, В 12 – на кроветворение.

Эндогенными факторами являются гормоны, регулирующие ростовые процессы, образующиеся в железах внутренней секреции. Центральной эндокринной железой является гипофиз . Передняя доля вырабатывает тропные гормоны: тиреотропный, регулирующий функцию щитовидной железы, адренокортикотропный – функцию надпочечников, гонадотропные – функцию яичников и семенников (фолликулостимулирующий и лютеинизирующий гормоны). Собственный гормон этой доли – соматотропин влияет на синтез белка, что обеспечивает размножение клеток и, следовательно, рост и накопление биомассы. Гипофункция приводит к возникновению карликовости, гиперфункция – к гигантизму. Гиперфункция в зрелом возрасте приводит к развитию заболевания акромегалии. Гормоны щитовидной железы (тироксин и трийодтиронин) усиливают окислительные процессы в митохондриях. Врожденная недостаточность приводит к кретинизму, гиперфункция вызывает тиреотоксикоз.

Паращитовидные железы продуцируют паратгормон, который влияет на метаболизм кальция и фосфора.

Кора надпочечников продуцирует альдостерон, кортикостерон и глюкокортикоиды, регулирующие диурез, кровяное давление, минеральный и углеводный обмен. Мозговое вещество продуцирует адреналин и норадреналин, которые обеспечивают регуляцию тонуса сосудов.

Островки Лангерганса поджелудочной железы секретируют инсулин и глюкагон, регулирующие углеводный обмен.

Клетки Лейдига семенников продуцируют тестостерон, влияющий на формирование вторичных половых признаков и обеспечивающий регуляцию сперматогенеза.

Тека-клетки яичников секретируют эстрол, эстрадиол, прогестерон, обеспечивающие оогенез, овуляцию, формирование вторичных половых признаков.

Генный контроль постэмбрионального развития.

1. В дорепродуктивный период генный контроль осуществляется за счет следующих процессов изменения наследственного материала:

Синтез ДНК за счет механизма репликации;

Функция специфических генов за счет их избирательной активности;

Регуляция активности генов гормонами;

Групповая репрессия генов одной из Х-хромосом у женщин;

Синтез белков за счет генетической информации соматических клеток.

2. В репродуктивный период:

Синтетические процессы ДНК, белков продолжаются за счет избирательной активности генов;

Гормональная регуляция;

Групповая репрессия генов одной из Х-хромосом у женщин.

3. Пострепродуктивный:

Нарушение синтеза ДНК за счет накопления вредных мутаций;

Синтез нормальных и аномальных белков за счет избирательной активности генов, накопление промежуточных продуктов обмена, которые являются мутагенами;

Ослабление регуляции генов гормонами;

Репрессии и экспрессии определенных генов.

Биологические аспекты старения. Основные теории старения.

Признаки старения проявляются на разных уровнях организации организма: молекулярном, клеточном, тканевом, системном, организменном.

На организменном уровне – внешние признаки: изменение осанки, формы тела, уменьшение размеров тела, седина, потеря эластичности кожи, морщины, ослабление зрения слуха, ухудшение памяти, истончение компактного и губчатого вещества кости, изменение лицевого отдела черепа. Уменьшается жизненная сила легких, увеличивается артериальное давление, атеросклероз, ослабление функций щитовидной железы, уменьшение функций половых гормонов, уменьшение основного обмена.

На клеточном уровне –уменьшение воды в цитоплазме, изменение активного транспорта ионов, усиление гликолиза, снижение содержания АТФ, креатинфосфата в сердце, мозге, скелетных мышцах, изменяется РНК и ДНК.

На молекулярном – возникают ошибки считывания информации с РНК и нарушение синтеза определенных белков. В цитоплазме клетки накапливаются свободные радикалы. Ассимиляция не восполняет диссимиляцию. Снижается митотическая активность, усиливаются хромосомные абберации. Однако многие гомеостатические показатели не изменяются: артериальное давление, частота сердечных сокращений, ЭКГ, ЭЭГ, уровень сахара в крови, анализ желудочного сока.

Возрастные изменения бывают разными: показатели одних снижаются (сокращения сердца, функция щитовидной железы, острота зрения); а других – не меняются (сахар в крови, эритроциты, лейкоциты, гемоглобин); у третьих – повышаются (синтез гипофизарных гормонов, уровень холестерина в крови, чувствительность клеток к гуморальным и химическим факторам).

Возрастные изменения проявляются в разные периоды. Так атрофия тимуса возникает у человека в 13-15 лет, угасание функций яичников – в 48-52 года. В костной ткани изменения возникают рано, но развиваются медленно, в ЦНС – поздно, но быстро.

Получается парадокс, над которым задумывался еще Демокрит. Он писал: «Старость есть повреждение всего тела при полной неповрежденности всех его частей». Это кажущееся противоречие имеет глубокий биологический смысл. Несмотря на структурные изменения при старении, благодаря процессам регулирования возникают приспособительные механизмы. Они противодействуют угасанию обмена и функций, содействуют их сохранению или противостоят резкому изменению. Вот почему на определенном этапе старения, несмотря на некоторые очевидные структурные изменения, может сохранится еще оптимальный уровень деятельности ряда систем.

Старение – это неизбежно и закономерно нарастающий во времени, развивающийся задолго до старости многозвеньевой процесс, неизбежно ведущий к сокращению приспособительных возможностей организма, увеличению вероятности смерти. Старение – результат ограничения механизмов саморегуляции, снижения их потенциальных возможностей при первичных изменениях в регулировании генетического аппарата.

Для объяснения процессов старения к настоящему времени выдвинуто около 300 различных гипотез, большинство из которых представляют только исторический интерес: энергетическая (М. Рубнер), гормональная (С. Воронов), интоксикационная (И. Мечников), перенапряжение ЦНС (И. Павлов), соединительнотканная (А. Богомолец), адаптационно-регуляторная (В.Фрольксис) и генетическая или программная. Единой теории нет.

Геронтология сегодняшнего дня стремится раскрыть первичные изменения и все последующие цепи причинно-следственных связей, ведущих к глубоким нарушениям деятельности организма. Большинство исследователей согласны с тем, что первичные механизмы старения связаны с нарушениями в генетическом аппарате, в биосинтезе белков.

Предпосылками этих взглядов являются следующие факты. Продолжительность жизни – видовой признак. Следовательно, механизмы, определяющие продолжительность жизни, каким-то образом закреплены в ходе эволюции, предопределены в онтогенезе организма.

Если учесть, что существует определенная последовательность функций генов-регуляторов (одни из них изменяются раньше и значительно, другие – практически не изменяются, третьи – активируются), то станет понятной неравномерность, разнонаправленость проявления процессов старения организма.

В 1975г. В. В. Фрольксис выступил с обоснованием адаптационно-регуляторной теории старения, согласно которой старение сложный многокомпонентный внутренне противоречивый процесс нарушения жизнедеятельности организма, и процесс возникновения важных мобилизационных приспособительных механизмов, процесс угасания обмена и функции и возникновение активных механизмов их подавления. Первичные изменения при старении развиваются в регуляторных генах, которые приводят к нарушению деятельности клетки, её гибели.

Изучалась связь между старением организма и числом делений его соматических клеток. Выявлено, что число делений клеток уменьшается с увеличением возраста донора.

Благодаря механизмам саморегуляции в ходе старения возникают важные приспособительные механизмы на разных уровнях жизнедеятельности организма (усиление чувствительности к медиаторам и гормонам). Они во многом определяют продолжительность жизни особи. Значение их не абсолютное. В ряде случаев сопровождающие адаптационные механизмы сдвиги могут способствовать нарушению метаболизма организма.

Смерть – закономерное явление. Она подготавливается всем ходом онтогенеза. Смерть всегда находит свое выражение в форме той или иной случайности. Смерть человека даже в глубокой старости наступает в результате разных причин (при нарушении согласованности обменных процессов в организме, и организма со средой). Случайные причины могут вызвать преждевременную смерть в любом периоде онтогенеза.

Биология доказала, что смерть – это медленный, последовательно совершающийся процесс. После смерти организма как целого, его части продолжают некоторое время жить и погибают в известной последовательности (клетка коры мозга  клетки печени  сердце  перефирические органы).

Современная наука позволила уточнить понятие "смерть". Советский ученый В. А. Неговский предложил различить клиническую и биологическую смерть. Клиническая смерть характеризуется прекращением сокращений сердца, отсутствием дыхания, рефлекторных реакций. Однако – это первый и еще обратимый процесс умирания. В момент клинической смерти все органы и ткани остаются живыми, их метаболизм остается упорядоченным. Её продолжительность 3-5 минут. В состоянии клинической смерти можно добиться восстановления жизнедеятельности организма. В настоящее время методы оживления организма человека успешно используются в клинике.

Биологическая смерть наступает позже и характеризуется неупорядоченными химическими реакциями в клетках, автолизом и разложением ткани. Биологическая смерть – процесс необратимый.

Геронтология, гериатрия. Роль генетических и социальных факторов и медицины в долголетии человека.

Изучение закономерностей старения организма составляет предмет особой биологической дисциплины – геронтологии. Особенности развития, течения, лечения, предупреждения заболеваний у стариков изучает гериатрия.

Небла­гоприятные условия человеческого существования сокращают срок жизни. В ряде стран очень высока смертность от социальных конфликтов, инфекционных болезней, голода и т. п. Отмечено, что врагами долголетия являются злоупотребление алкого­лем и переедание. Пища должна быть простой, достаточно калорийной и разнообразной, содержащей витамины. Несомненно, очень вреден ни­котин.

В увеличении продолжительности жизни большая роль принадлежит профилактической медицине. В нашей стране многие инфекционные бо­лезни полностью ликвидированы, другие – сведены к минимуму. Дис­пансеризация и профилактические осмотры населения способствуют ран­нему выявлению заболеваний и своевременному их лечению. Особое вни­мание уделяется массовому развитию физкультуры и спорта.

I. Эмбриональный период развития (от греческого слова embryon - зародыш) –

Первые 8 недель развития: дробление - образование однослойного зародыша бластулы; гаструляция - образование сначала двух, а затем трёхслойного зародыша – гаструлы, образующиеся слои называются зародышевыми листками; гистогенез - образование тканей; органогенез - образование органов.

Каждый из зародышевых листков дает начало тем или иным органам. Из эктодермы образуются: нервная система, эпидермис кожи и его производные (роговые чешуи, перья и волосы, зубы). Из мезодермы образуется мускулатура, скелет, выделительная, половая и кровеносная система. Из энтодермы образуется пищеварительная система и ее железы (печень, поджелудочная), дыхательная система.

I – зигота;

II – 2 бластомера;

II – 8 бластомеров;

II – 32 бластомера (морула);

III – стадия бластулы;

IV – гаструла;

V – закладка тканей и органов:

1 – нервная трубка;

2 – хорда;

3 – эктодерма;

4 – эндодерма;

5 – мезодерма.

Рис. Ранние стадии развития ланцетника

Плодный (фетальный) период развития. (fetis - плод). С 9 недели, когда зародыш уже имеет все системы органов. Начиная с 9 недели, зародыш человека называется плодом . У человека антенатальное развитие длится 38-42 недели (от греческого «ante» - перед, «natus» - рождение)

II. Постэмбриональный период развития - с момента рождения до смерти организма.

Ювенильный период (до полового созревания) протекает в зависимости от типа онтогенеза: прямой тип или развите с метаморфозом

Прямой тип развития - рождающийся организм имеет все основные свойственные взрослому животному, отличается преимущественно размерами и пропорциями тела. Для высших млекопитающих и человека характерен внутриутробный тип развития, для рептилий и птиц – яйцекладный.

Исключение: яйцекладущие млекопитающие – утконос и яхидна.

Непрямой тип развития - эмбриональное развитие приводит к развитию личинки, которая по внешним и внутренним признакам отличается от взрослого организма. Характерен для многих беспозвоночных, часто рыб. Пример: из яиц бабочек развивается гусеница, из яиц лягушки головастики.

В зависимости от особенностей превращения личинки во взрослую форму, различают 2 вида непрямого онтогенеза:

С неполным превращением - личинки развиваются постепенно, последовательно утрачивая временные личинковые органы и приобретая постоянные характерные для взрослой особи. Пример: головастики - живут в водной среде, имеют временные органы жабры, хвост, 2х камерное сердце; взрослые лягушки - лёгкие, 3х камерное сердце, конечности. Так же характерно для: клещей, клопов, прямокрылых (кузнечиков, вшей, стрекоз, тараканов). в процессе роста и развития личинки несколько раз линяют (тараканы линяют 6 раз) и после каждой линьки становятся все более похожими на взрослую особь.

С полным превращением (метаморфозом ) характерен нескольким отрядам насекомых, бабочкам, жукам, двукрылым (комарам,мухам), перепончатокрылым (пчёлы, осы, муравьи), блохам и т.д. Личинки имеют червеобразное строение и совершенно не похожи на взрослых особей.

Рис. Развитие насекомых с неполным (I) и полным (II) прекращением. 1 – яйца, 2,3,4,5,6 - личинки; 7 – куколка; 8 – взрослая форма (имаго).

По окончанию периода питания личинки превращается в неподвижную стадию - куколку , покрытую плотным хитиновым чехлом. Внутри куколки особые ферменты лизируют все органы, за исключением нескольких клеток, называемых имагинальные диски. Из клеток диска развиваются взрослые органы.

Зрелый, пубертатный период . Характеризуется наибольшей самостоятельностью, активностью организма в окружающей среде.

Период старости.

Рост и развитие.

Переход функциональных систем на режим взросления организма характеризуется ростом органов и тканей организма, установлением соответствующих пропорций тела. В процессе индивидуального развития выделяют несколько типов роста: ограниченный и неограниченный; изометрический и аллометрический.

Ограниченный (определенный). Рост приурочен к определенным стадиям онтогенеза. Пример: насекомые растут только в период линек; у человека рост прекращается в возрасте 13-15 лет. В период полового созревания может быть пубертатный скачок роста.

Неограниченный рост наблюдается у рыб, комнатных растений на протяжении всей жизни или у многолетних растений.

Изометрический рост - рост при котором орган растет с такой же скоростью, как и остальное тело. Изменение размеров тела не сопровождают изменение его формы. Характерны для рыб и для насекомых с неполным превращением (саранча, за исключением крыльев и половых органов)

Аллометрический называется рост при котором данный орган растет с оной скоростью нежели остальное тело. Рост организма приводит к изменению его пропорций. Характерны для млекопитающих и человека.Почти у всех животных в последнюю очередь происходит развитие органов размножения.


ОСНОВЫ ГЕНЕТИКИ .

Генетика – наука изучающая закономерности наследования и изменчивости.

Задача генетики: изучение проблем хранения, передачи, реализации изменчивости наследственной информации.

Методы:

1. Гибридологический метод (скрещиваний) – разработанный Г.Менделем, является основным в генетических исследованиях. Метод позволяет выявить закономерности наследования отдельных признаков и свойства при половом размножение организмов.

2. Цитогенетический метод - позволяет изучать кариотип клеток организма и выявить геномные и хромосомные мутации. С появление данного метода установлены причины множественных заболеваний человека (с. Дауна и др.)

3. Генеалогический метод (родословных) – исследования наследования, какого либо признака у человека в ряде поколений (составляется родословная, отмечаются члены семьи имеющие изучаемый признак)

4. Близнецовый метод – изучают близнецов с одинаковыми генотипами, сто позволяет выявить влияние среды на формирование признаков.

5. Биохимический метод – изучает нарушение обмен веществ возникших в результате геных мутация.

6. Популяционно-статистический метод – позволяет рассчитать частоту встречаемости генов и генотипов в популяции.

Основные понятия.

Онтогенез (от греч. όntos – сущее) или индивидуальное развитие – развитие особи с момента образования зиготы или другого зачатка до естественного завершения её жизненного цикла (до смерти или прекращения существования в прежнем качестве). С генетической точки зрения онтогенез – процесс развертывания, реализации наследственной информации, заложенной в зародышевых клетках.

Онтогенез является неотъемлемым свойством любой особи, не зависящим от ее систематической принадлежности. Без возникновения онтогенеза эволюция жизни была бы немыслима. Индивидуальное развитие организмов тесно связано с историческим развитием – филогенезом (от греч. phyle – племя).

Онтогенез особей различных видов неодинаков по продолжительности, темпам и характеру дифференцировок. У многоклеточных животных и человека началу онтогенеза предшествует период проэмбрионального (предзародышевого) развития – прогенез . В этот период образуются половые клетки, происходит процесс оплодотворения и образования зиготы.

В онтогенезе выделяют четыре периода – предзародышевый,эмбриональный (пренатальный ), постэмбриональный (постнатальный ) и состояние взрослого организма , включая старение и смерть. У животных обычно дифференцировками богат эмбриональный период, а у растений – постэмбриональный. Каждый из этих периодов онтогенеза в свою очередь может быть подразделен на последовательные качественные этапы.

Предзародышевый включает гаметогенез и оплодотворение.

Эмбриональный период характеризуется развитием зародыша во внешней среде или в половых путях материнского организма и быстрыми процессами формообразования. В результате этих процессов в короткий срок появляется многоклеточный организм.

В эмбриональном развитии человека выделяют три периода – начальный , зародышевый , плодный (фетальный ).

Начальный период охватывает первую неделю эмбрионального развития. Он начинается с момента оплодотворения и продолжается до имплантации зародыша в слизистую оболочку матки.

Зародышевый период у человека начинается от момента имплантации до завершения процесса органогенеза (2–8 неделя). Этот период характеризуется процессами органогенеза, специфическими особенностями характера питания – гистиотрофным питанием, когда зародыш питается секретом маточных желез и продуктами распада тканей слизистой оболочки матки. В этом периоде развития в течение продолжительного времени отсутствует плацентарное кровообращение, а также приобретаются характерные черты, свойственные зародышу человека.

Плодный , или фетальный период эмбрионального развития человека начинается с 9-й недели после оплодотворения и продолжается до рождения. Для этого периода характерны усиленный рост, бурные формообразовательные процессы, специфические особенности характера питания – гемотрофное питание, которое возникает в связи с функционированием плацентарного кровообращения. Характеристика периодов эмбрионального развития человека представлена в таблице 5.

Таблица 5

Характеристика периодов эмбрионального развития человека

Постэмбриональный период у человека и млекопитающих животных начинается с момента рождения, выхода из зародышевых оболочек до завершения жизни и длится до наступления половой зрелости. У яйцекладущих животных этот период начинается с момента выхода молодой особи из яйцевых оболочек; у растений – с момента появления первичного корешка.

Переход к взрослому организму может осуществляться прямым и непрямым путем. В связи с этим различают три типа онтогенеза: личиночный , неличиночный и внутриутробный .

Личиночный , или непрямой тип развития характерен для многих кишечнополостных, червей, моллюсков, ракообразных, насекомых, ланцетника, двоякодышащих и некоторых костистых рыб, амфибий. Этот тип развития отличается наличием личиночных стадий. После выхода из яйца личинки ведут активный образ жизни и сами добывают пищу. Личинки не похожи на родительскую форму – они гораздо проще устроены, имеют провизорные органы, которые в последствие резорбируются (рассасываются) и у взрослой особи не наблюдаются.

Дальнейшее превращение – метаморфоз – личинки во взрослую особь может осуществляться по типу полного превращения , при котором личинка резко отличается от взрослой особи и проходит ряд стадий развития, из которых основной является стадия куколки (бабочка). Или же развитие происходит без стадии куколки – по типу неполного превращения , а сама личинка похожа на взрослое животное, но меньших размеров (кузнечик, саранча).

Неличиночный (прямой ) тип развития характеризуется тем, что появляется организм, похожий на взрослую родительскую форму, но отличающимся от неё меньшими размерами и не вполне развитым половым аппаратом. У таких форм животных (рыбы, рептилии, птицы, яйцекладущие млекопитающие, головоногие моллюски, кишечнополостные) все органы формируются в эмбриональный период развития, а в постэмбриональный происходит рост, половое созревание и дифференцировка функций. Прямое развитие связано с большим запасом желтка в яйцеклетке и наличием защитных приспособлений для развивающегося зародыша, или с развитием зародыша в материнском организме.

Внутриутробный (прямой ) – наиболее поздний в филогенетическом отношении тип развития. Он характерен для высших млекопитающих и человека, у которых яйцеклетки бедны желтком и развитие зародыша происходит в матке материнского организма. В этом случае образуются провизорные внезародышевые органы, важнейшим из которых является плацента.

Жизненные циклы организмов

Жизненный цикл , или цикл развития , складывается из последовательных фаз (которые часто называют стадиями), отмечающих важнейшие, узловые состояния организма – зарождение , развитие и размножение .

В жизненных циклах организмов, размножающихся половым способом, выделяют две фазы – гаплоидную и диплоидную . Относительная продолжительность этих фаз варьируется у представителей различных групп живых организмов. Так, у простейших и грибов преобладает гаплоидная фаза, а у высших растений и животных – диплоидная.

Удлинение диплофазы в ходе эволюции объясняется преимуществами диплоидного состояния перед гаплоидным. Благодаря гетерозиготности и рецессивности в диплоидном состоянии сохраняются и накапливаются разнообразные аллели. Это повышает объем генетической информации в генофондах популяций и видов, ведет к образованию резерва наследственной изменчивости, что перспективно для дальнейшей эволюции. В то же время у гетерозигот вредные рецессивные аллели не оказывают влияния на развитие фенотипа и не снижают жизнеспособности организмов.

Жизненные циклы бывают простыми и сложными . Сложные состоят из простых циклов, которые в этом случае оказываются незамкнутыми звеньями сложного цикла.

Чередование поколений свойственно почти всем эволюционно продвинутым водорослям и всем высшим растениям. Обобщенная схема жизненного цикла растения, у которого наблюдается чередование поколений, представлена на рис. 11.

Рис. 11. Обобщенная схема жизненного цикла растения, у которого наблюдается чередование поколений

Примером растения с простым циклом может быть одноклеточная зеленая водоросль хлорелла, которая размножается только спорами. Развитие хлореллы начинается с автоспор. Они еще внутри оболочки материнской клетки одеваются собственными оболочками, становясь полностью подобными взрослому растению.

Молодые хлореллы растут, достигают зрелости и становятся органом спорогенеза – вместилищем спор. В материнской клетке возникает 4–8 автоспор – дочерних хлорелл. В результате, жизненный цикл хлореллы представляется как последовательность трех узловых фаз: автоспора вегетирующеерастение репродуктивнаяклетка (вместилище) → автоспора и т.д.

Таким образом, простой жизненный цикл при размножении спорами имеет последовательность всего трех узловых фаз: 1 – одноклеточный зачаток как начальная фаза растения, 2 – взрослый организм одно- или многоклеточный, 3 – материнская (репродуктивная) клетка зачатка. После третьей фазы течение жизни приводит снова к фазе одноклеточного зачатка.

Такие простые жизненные циклы для растений не характерны. В подавляющем большинстве групп растений наблюдаются сложные жизненные циклы. Они обычно включают два, иногда три простых цикла. Кроме того, в сложных циклах (при половом размножении) обязательно имеются 1–2 обособленные фазы гаметы и зиготы .

Например, равноспоровый папоротник в природе представлен двумя формами особей – собственно папоротник и заросток папоротника. Заросток папоротника (маленькие зеленые пластинки, едва заметные на почве) является непосредственным потомством крупных перистолистных особей папоротника. Он недолговечен, но успевает дать начало жизни единственной крупнолиственной особи. В результате наблюдается чередование поколений: папоротник → заросток → папоротник.

Папоротник, размножающийся спорами, называется спорофит (бесполая генерация), а заросток размножается гаметами и называется гаметофит (половая генерация). Гаметофит и спорофит определяются только по способу размножения особи. Раздельное существование спорофита и гаметофита невозможно, и они относятся только к растениям со строгим чередованием поколений.

У покрытосеменных растений женский гаметофит обычно редуцирован до семи клеток, архегониев не имеет и называется зародышевым мешком. Зародышевый мешок, гомологичный заростку, микроскопически мал и находится в глубине цветка.

Мужской гаметофит семенных растений развивается из микроспоры и представляет собой пыльцевое зерно (пыльцу), прорастающее в пыльцевую трубку с образованием двух спермиев. Жизненный цикл цветкового растения представлен на рис. 12.

Рис. 12. Жизненный цикл цветкового растения

Жизненные циклы значительно усложняются, если половое размножение чередуется с партеногенетическим и бесполым. Существуют гапло-диплоидные организмы, у которых один пол находится всегда только в гаплофазе, а другой как в дипло-, так и в гаплофазе. К таким организмам относится медоносная пчела (рис. 13).

Рис. 13. Жизненный цикл пчелы

Соматические клетки матки пчелиной семьи диплоидны, и гаплофаза представлена у нее только гаметами. У рабочей пчелы яичники редуцированы, и гаплофаза в ее жизненном цикле отсутствует. Трутни развиваются партеногенетически из неоплодотворенных яиц и имеют гаплоидный набор хромосом. В силу замены мейоза митозом в гаметогенезе трутней их сперматозоиды оказываются также гаплоидными. Следовательно, трутни существуют только в гаплофазе.

Особенно широкой изменчивостью жизненных циклов отличаются грибы (рис. 14). В их жизненном цикле четко выражены три ядерные фазы – гаплоидная, диплоидная и дикарион.

Дикарион найден у Ascomyces и Basidiomyces, у последних он составляет бόльшую часть цикла.

Гаплоидное состояние у Basidiomyces является переходным, а диплоидное существует только как зигота.

У грибов и водорослей соотношение продолжительности гаплофазы и диплофазы меняется, поэтому наблюдаются разные промежуточные варианты жизненных циклов.

Рис. 14. Схема основных жизненных циклов у грибов

(изменения в ядерной фазе указаны различной штриховкой,

стрелками показано направление развития)

Вспомните!

Какой тип развития характерен для человека?

Прямое развитие – такой тип развития характерен для организмов, детёныши которых рождаются уже похожими на взрослых особей. Прямое внутриутробное развитие.

Что такое плацента?

Плацента («детское место») - это важнейший и абсолютно уникальный орган, существующий только во время беременности. Она связывает между собой два организма - матери и плода, обеспечивая его необходимыми питательными веществами.

Как образ жизни матери во время беременности влияет на здоровье будущего ребенка?

На протяжении всего времени внутриутробного развития плод, напрямую связанный с организмом матери через уникальный орган - плаценту, находится в постоянной зависимости от состояния здоровья матери. В последнее время ведётся много споров на тему, влияет ли курение на неродившегося ребёнка. Известно, что никотин, попадающий в кровь матери, легко проникает сквозь плаценту в кровеносную систему плода и вызывает сужение сосудов. Если поступление крови в плод ограничено, то снижается его снабжение кислородом и питательными веществами, что может вызвать задержку развития. У курящих женщин ребёнок при рождении весит в среднем на 300-350 г меньше нормы. Существуют и другие проблемы, связанные с курением при беременности. У таких женщин чаще происходят преждевременные роды и выкидыши на поздних сроках беременности. На 30% выше вероятность ранней детской смертности и на 50% - вероятность развития пороков сердца у детей, чьи матери не смогли во время беременности отказаться от сигарет.

Столь же легко через плаценту проходит и алкоголь. Употребление спиртного при беременности может вызвать у ребёнка состояние, известное как алкогольный синдром плода. При этом синдроме наблюдается задержка умственного развития, микроцефалия (недоразвитие головного мозга), расстройства поведения (повышенная возбудимость, невозможность сосредоточиться), снижение скорости роста, слабость мышц. Для развития плода представляют серьёзную опасность вирусные заболевания матери во время беременности. Наиболее опасны краснуха, гепатит В и ВИЧ-инфекция. В случае заражения краснухой на первом месяце беременности у 50% детей развиваются врождённые пороки: слепота, глухота, расстройства нервной системы и пороки сердца.

Вопросы для повторения и задания

1. Назовите особенности онтогенеза, характерные для человека. Какие преимущества дают эти особенности?

1) Эмбриональный Процесс эмбрионального развития человека длится около 280 суток и подразделяется на три периода: начальный (1 -я неделя), зародышевый (2-8 -я недели) и плодный (с 9 -й недели до рождения).

2) Постэмбриональный: подразделяют на три периода: дорепродуктивный, период зрелости (репродуктивный) и период старения (пострепродуктивный).

Такие особенности дают максимальное выживание и присосабливание к условиям среды потомства.

2. Как никотин, алкоголь и наркотические вещества влияют на развитие зародыша человека?

В последнее время ведётся много споров на тему, влияет ли курение на неродившегося ребёнка. Известно, что никотин, попадающий в кровь матери, легко проникает сквозь плаценту в кровеносную систему плода и вызывает сужение сосудов. Если поступление крови в плод ограничено, то снижается его снабжение кислородом и питательными веществами, что может вызвать задержку развития. У курящих женщин ребёнок при рождении весит в среднем на 300-350 г меньше нормы. Существуют и другие проблемы, связанные с курением при беременности. У таких женщин чаще происходят преждевременные роды и выкидыши на поздних сроках беременности. На 30% выше вероятность ранней детской смертности и на 50% - вероятность развития пороков сердца у детей, чьи матери не смогли во время беременности отказаться от сигарет. Столь же легко через плаценту проходит и алкоголь. Употребление спиртного при беременности может вызвать у ребёнка состояние, известное как алкогольный синдром плода. При этом синдроме наблюдается задержка умственного развития, микроцефалия (недоразвитие головного мозга), расстройства поведения (повышенная возбудимость, невозможность сосредоточиться), снижение скорости роста, слабость мышц

3. Какие факторы внешней среды оказывают влияние на развитие зародыша человека?

Все виды экологических факторов являются мутагенами для развития зародыша:

Химические – растворитель, спирты, БАДы, лекарства и др

Физические – температура, излучение (радиация)

Биологические – бактерии, вирусы (краснуха, ВИЧ, гепатиты и др.)

4. Назовите периоды постэмбрионального развития человека.

Важнейшей чертой человека, приобретённой им в процессе эволюции, является удлинение дорепродуктивного периода. По сравнению с остальными млекопитающими, включая человекообразных приматов, половозрелость у человека наступает наиболее поздно. Удлинение детства и замедление роста и развития расширяют возможности обучения и приобретения социальных навыков. Репродуктивный период - это наиболее длительный этап постэмбрионального развития человека, завершение которого говорит о наступлении постре продуктивного периода, или периода старения. Процесс старения затрагивает все уровни организации живого. Старение неизбежно приводит к смерти - общему для всех живых существ финалу индивидуального развития организмов. Смерть является необходимым условием для смены поколений, т. е. для продолжения существования и эволюции человечества в целом.

5. К каким последствиям в развитии человека может привести недостаток витамина D и неполноценное питание?

Витамины группы D образуются под действием ультрафиолета в тканях животных и растений из стеринов.К витаминам группы D относятся:

– витамин D2 - эргокальциферол; выделен из дрожжей, его провитамином является эргостерин;

– витамин D3 - холекальциферол; выделен из тканей животных, его провитамин - 7-дегидрохолестерин;

– витамин D4 - 22, 23-дигидро-эргокальциферол;

– витамин D5 - 24-этилхолекальциферол (ситокальциферол); выделен из масел пшеницы;

– витамин D6 - 22-дигидроэтилкальциферол (стигма-кальциферол).

Сегодня витамином D называют два витамина - D2 и D3 - эргокальциферол и холекальциферол - это кристаллы без цвета и запаха, устойчивые в воздействию высоких температур. Эти витамины являются жирорастворимыми, т.е. растворяются в жирах и органических соединениях и нерастворимы в воде. Витамин D образуется в коже под действием солнечных лучей из провитаминов. Провитамины, в свою очередь, частично поступают в организме в готовом виде из растений (эргостерин, стигмастерин и ситостерин), а частично образуются в тканях их холестерина (7-дегидрохолестерин (провитамин витамина D3). При условии, что организм получает достаточное количество ультрафиолетового излучения, потребность в витамине D компенсируется полностью. Однако количество витамина D, синтезируемого под действием солнечного света зависит от таких факторов как:

– длина волны света (наиболее эффективен средний спектр волн, который мы получаем утром и на закате);

– исходная пигментация кожи и (темнее кожа, тем меньше витамина D вырабатывается под действием солнечного света);

– возраст (стареющая кожа теряет свою способность синтезировать витамин D);

– уровень загрязненности атмосферы (промышленные выбросы и пыль не пропускают спектр ультрафиолетовых лучей, потенцирующих синтез витамина D, этим объясняется, в частности, высокая распространенность рахита у детей, проживающих в Африке и Азии в промышленных городах).

Дополнительными пищевыми источниками витамина D являются молочные продукты, рыбий жир, яичный желток. Однако на практике молоко и молочные продукты далеко не всегда содержат витамин D или содержит лишь следовые (незначительные) количества (например, 100 г коровьего молока содержит всего 0,05 мг витамина D), поэтому их потребление, к сожалению, не может гарантировать покрытие нашей потребности в этом витамине. Кроме того, в молоке содержится большое количество фосфора, который препятствует усвоению витамина D. Основная функция витамина D - обеспечение нормального роста и развития костей, предупреждение рахита и остеопороза. Он регулирует минеральный обмен и способствует отложению кальция в костной ткани и дентине, таким образом, препятствуя остеомаляции (размягчению) костей. Поступая в организм, витамин D всасывается в проксимальном отделе тонкого кишечника, причем обязательно в присутствии желчи. Часть его абсорбируется в средних отделах тонкой кишки, незначительная часть - в подвздошной. После всасывания кальциферол обнаруживается в составе хиломикронов в свободном виде и лишь частично в форме эфира. Биодоступность составляет 60-90%. Витамин D влияет на общий обмен веществ при метаболизме Ca2+ и фосфата (НРО2-4). Прежде всего, он стимулирует всасывание из кишечника кальция, фосфатов и магния. Важным эффектом витамина при этом процессе является повышение проницаемости эпителия кишечника для Ca2+ и Р. Витамин D является уникальным - это единственный витамин, действующий и как витамин, и как гормон. Как витамин он поддерживает уровень неорганического Р и Са в плазме крови выше порогового значения и повышает всасывание Са в тонкой кишке.

Симптомы гиповитаминоза

– основным признаком недостаточности витамина D является рахит и размягчение костей (остеомаляция).

– более легкие формы дефицита витамина D проявляются такими симптомами как:

– потеря аппетита, снижение веса,

– ощущение жжения во рту и в горле,

– бессонница,

– ухудшение зрения.

Подумайте! Вспомните!

1. Обсудите в классе, какое значение в эволюции человека имело удлинение дорепродуктивного периода.

Важнейшей чертой человека, приобретённой им в процессе эволюции, является удлинение дорепродуктивного периода. По сравнению с остальными млекопитающими, включая человекообразных приматов, половозрелость у человека наступает наиболее поздно. Удлинение детства и замедление роста и развития расширяют возможности обучения и приобретения социальных навыков. Это важно для сохранения потомства, а значит поддержание численности вида, максимальной адаптации человека к условиям среды.

2. Для каких организмов понятия «клеточный цикл» и «онтогенез» совпадают?

Для одноклеточных, у которых жизненный цикл – это жизнь клетки с момента ее появления до деления или гибели.

4. Используя дополнительную литературу и ресурсы Интернета, выясните, что такое акселерация, какие в настоящее время существуют гипотезы о причинах акселерации. Обсудите в классе найденную вами информацию по этой теме.

Акселерация или акцелерация (от лат. acceleratio-ускорение) – ускоренное развитие живого организма.

В обоснование акселерации предложено множество разнообразных гипотез, которые условно можно разделить на несколько групп:

– Прежде всего нутрицевтическая, связанная с изменением (улучшением) характера питания, особенно в последние три десятилетия после второй мировой войны.

– Гипотезы связанные с биологическим отбором (первые сообщения об ускоренном развитии детей - Гент, 1869; Робертс (Ch. Roberts), 1876), с увеличением числа гетеролокальных (смешанных) браков - гетерозис, влечением к городской жизни, в результате которого в города прибывают наиболее развитые жители из сельской местности - гипотеза Мауера (G. Mauer), 1887, а также другие гипотезы о конституциальном отборе - к примеру, стремление занять высшие слои общества или о переселении в города людей с более развитым интеллектом.

– Группа гипотез связанных с влиянием факторов среды (гипотезы 30-х годов) связывала изменения в скорости роста и развитии с естественными и искусственными изменениями условий среды. Кох (E. W. Koch), 1935, который предложил термин акцелерация, придавал значение гелиогенным влияниям, увеличению светового дня за счет электрического освещения. Трейбер (T. Treiber), 1941 связывал акцелерацию с влиянием радиоволн - хотя ускорение роста детей началось раньше широкого распространения радио на Земле, а Миллс (C. A. Mills), 1950 - с повышением температуры атмосферы Земли. Есть и другие гипотезы, например, связанные с радиацией или космическим излучением. Но тогда феномен должен был проявляться на всех детях одной местности. Однако, все авторы отмечают различия в скорости роста детей различных контингентов населения.

Каждая из гипотез в отдельности не могла объяснить все явления секулярного тренда и убедительным доказательством были бы данные об ускорении онтогенетического развития и увеличения размеров тела не только у людей, но и различных животных


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча