21.09.2019

Спиральная модель жизненного цикла программного обеспечения. Жизненный цикл программного обеспечения


Иногда люди не вполне отчетливо различают работы по управлению проектом и работы жизненного цикла проекта, так как для успешного выполнения проекта необходимы работы обоих видов. Основное различие между ними заключается в том, что управление проектом сосредоточено на определении, планировании, мониторинге и контроле, а также на закрытии проекта. Работы же, связанные с фактическим созданием результатов поставки проекта, принято относить к "жизненному циклу" проекта. В процессе управления проектом создается его график, но подавляющее большинство работ в этом графике составляют именно работы жизненного цикла проекта, в результате выполнения которых появляется выходная продукция.

Несмотря на уникальность всех проектов, подобно тому, как существуют общие процессы управления, применимые к большинству проектов, существуют также и общие модели, которые могут служить руководством по определению жизненного цикла большинства проектов. Эти общие модели ценны тем, что экономят время проектным командам при разработке графика проекта.

Примером одной из моделей жизненного цикла является распространенная классическая модель "водопад". Эта модель представляет базовый подход, который может применяться в любом проекте. Чаще всего Вам приходится начинать с понимания требований к результату проекта, затем следуют проектирование результата, создание и тестирование результата, и завершаете Вы внедрением результата. Каждая из этих областей концентрации внимания называется фазой (фаза анализа, фаза проектирования, фаза реализации и т.д.). Классический "водопадный" подход - это модель жизненного цикла, которую Вы, вероятно, сможете применить, ничего не зная о методологиях и планируя проект "с чистого листа".

Что может быть проще? Даже если у Вас очень маленький проект, Вы все равно проходите эти базовые шаги, хотя бы даже проделывая некоторые из них в голове. К примеру, если у Вас 40-часовой (на одну рабочую неделю) проект разработки или улучшения документа, может показаться что Вы сразу же бросаетесь в фазу "Реализация". Но так ли это? Наиболее вероятно, что Вы получили какого-либо рода поручение с требованиями или пожеланиями, которые придется осмыслить (Анализ) и трансформировать в замысел будущего содержания (Проектирование). Затем вы воплощаете замысел (Реализация), проверяете результат (Тестирование) и передаете для использования (Внедрение).

Водопадная (каскадная) схема включает несколько важных операций, применимых ко всем проектам:

* составление плана действий по разработке системы;

* планирование работ, связанных с каждым действием;

* применение операции отслеживания хода выполнения действий с контрольными этапами.

Графическая иллюстрация “водопадной модели” проектного цикла

Рисунок.3 Водопадная модель жизненного цикла проекта

Преимущества водопадной (каскадной) модели.

Каскадная модель имеет преимущества, если ее использовать в проекте, для которого она достаточно приемлема.

a. Модель хорошо известна потребителям, не имеющих отношения к разработке и эксплуатации программ, и конечным пользователям.

b. Она упорядоченно справляется со сложностями и хорошо срабатывает для тех проектов, которые достаточно понятны, но все же трудно разрешимы.

c. Она доступна для понимания, так как преследуется простая цель - выполнить необходимые действия.

d. Она проста и удобна в применении, так как процесс разработки выполняется поэтапно.

e. Она отличается стабильностью требований.

f. Она представляет собой шаблон, в который можно поместить методы для выполнения анализа, проектирования, кодирования, тестирования и обеспечения.

g. Она позволяет участникам проекта, завершившим действия на выполняемой ими фазе, принять участие в реализации других проектов.

h. Она определяет процедуры по контролю за качеством. Каждые полученные данные подвергаются обзору. Такая процедура используется командой разработчиков для определения качества системы.

i. Ход выполнения проекта легко проследить с помощью использования временной шкалы (диаграммы Ганта), поскольку момент завершения каждой фазы используется в качестве стадии.

Недостатки каскадной модели.

При использовании каскадной модели для проекта, который трудно назвать подходящим для нее, проявляются следующие недостатки:

a. В основе модели лежит последовательная линейная структура, в результате чего попытка вернуться на одну или две фазы назад, чтобы исправить какую-либо проблему или недостаток, приведет к значительному увеличению затрат и сбою в графике.

b. У клиента не всегда есть возможность ознакомиться с системой заранее, это происходит лишь в самом конце жизненного цикла.

c. Клиент не имеет возможности воспользоваться промежуточными результатами, и отзывы пользователей нельзя передать обратно разработчикам. Поскольку готовый продукт не доступен вплоть до окончания процесса, пользователь принимает участие в процессе только в самом начале - при сборе требований, и в конце во время приемочных испытаний.

d. Каждая фаза является предпосылкой для выполнения последующих действий, что превращает такой метод в рискованный выбор для систем, не имеющих аналогов, так как он не поддается гибкому моделированию.

e. Для каждой фазы создаются результативные данные, которые по его завершении считается замороженными. Это означает, что они не должны изменяться на следующих этапах жизненного цикла продукта. Если элемент результативных данных какого-либо этапа изменяется, на проект окажет негативное влияние изменение графика, поскольку ни модель, ни план не были рассчитаны на внесение и разрешение изменения на более поздних этапах жизненного цикла.

f. Все требования должны быть известны в начале жизненного цикла, но клиенты не всегда могут сформулировать все четко заданные требования на этот момент разработки.

В то время, как "водопад" универсален и может применяться в любом проекте, другие модели жизненного цикла могут оказаться более результативными и эффективными в зависимости от характеристик проекта. Например, если Вы устанавливаете пакет программного обеспечения, Вы пропускаете фазы проектирования и реализации. Подобным же образом, если Вы занимаетесь опытно-конструкторскими разработками, Вы можете использовать специфическую модель жизненного цикла R&D проекта, учитывающую, что проделанная работа или часть ее может пойти в мусорную корзину. Другие важные модели жизненного цикла могут использоваться для ускорения проектов определенного вида. Проекты в области информационных технологий, к примеру, часто используют итеративную либо быструю (Agile development) разработку.

Ниже приведены некоторые другие модели жизненного цикла проекта:

Итеративный подход (англ. iteration -- повторение) -- выполнение работ параллельно с непрерывным анализом полученных результатов и корректировкой предыдущих этапов работы. Проект при этом подходе в каждой фазе развития проходит повторяющийся цикл: Планирование -- Реализация -- Проверка -- Оценка (англ. plan-do-check-act cycle).

Преимущества итеративного подхода:

1. снижение воздействия серьезных рисков на ранних стадиях проекта, что ведет к минимизации затрат на их устранение;

2. организация эффективной обратной связи проектной команды с потребителем (а также заказчиками, стейкхолдерами) и создание продукта, реально отвечающего его потребностям;

3. акцент усилий на наиболее важные и критичные направления проекта;

4. непрерывное итеративное тестирование, позволяющее оценить успешность всего проекта в целом;

5. раннее обнаружение конфликтов между требованиями, моделями и 6.реализацией проекта;

8. эффективное использование накопленного опыта;

9. реальная оценка текущего состояния проекта и, как следствие, большая 10.уверенность заказчиков и непосредственных участников в его успешном завершении.

Спиральная модель жизненного цикла проекта . В рамках этой модели рассматривается зависимость эффективности проекта от его стоимости с течением времени. На каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка.

Спиральная модель была впервые сформулирована Барри Боэмом (Barry Boehm) в 1988 году. Отличительной особенностью этой модели является специальное внимание рискам, влияющим на организацию жизненного цикла. Боэм формулирует “top-10” наиболее распространенных (по приоритетам) рисков

1. Дефицит специалистов.

2. Нереалистичные сроки и бюджет.

3. Реализация несоответствующей функциональности.

4. Разработка неправильного пользовательского интерфейса.

5. “Золотая сервировка”, перфекционизм, ненужная оптимизация и оттачивание деталей.

6. Непрекращающийся поток изменений.

7. Нехватка информации о внешних компонентах, определяющих окружение системы или вовлеченных в интеграцию.

8. Недостатки в работах, выполняемых внешними (по отношению к проекту) ресурсами.

9. Недостаточная производительность получаемой системы.

10. “Разрыв” в квалификации специалистов разных областей знаний.

Большая часть этих рисков связана с организационными и процессными аспектами взаимодействия специалистов в проектной команде.

Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации. Каждый виток разбит на 4 сектора:

оценка и разрешение рисков,

определение целей,

разработка и тестирование,

планирование.

Спиральная модель ориентирована на большие, дорогостоящие и сложные проекты.

Преимущества спиральной модели:

При использовании спиральной модели при выполнении проекта, для которого она в достаточной мере подходит, появляются следующие преимущества:

a Спиральная модель разрешает пользователям «увидеть» систему на ранних этапах, что обеспечивается посредством использования ускоренного прототипирования в жизненном цикле разработки проекта.

b Обеспечивается определение непреодолимых рисков без особых затрат.

c Модель разрешает пользователям активно принимать участие при планировании, анализе рисков, разработке, а также при выполнении оценочных действий.

d Она обеспечивает разбиение большого потенциального объема работы по разработке продукта на небольшие части.

e В модели предусмотрена возможность гибкого проектирования, поскольку в ней воплощены преимущества каскадной модели, и в то же время разрешены итерации по всем фазам этой же модели.

f Реализовано преимущество инкрементной модели, а именно выпуск инкрементов, сокращение графика посредством перекрывания инкрементов и неизменяемость ресурсов при постепенном росте системы.

Недостатки спиральной модели:

При использовании спиральной модели относительно проекта, для которого она не подходит в достаточной мере, проявляются следующие недостатки:

a Спираль может продолжаться до бесконечности.

b Большое количество промежуточных стадий может привести к необходимости в обработке внутренней дополнительной и внешней документации.

c Использование модели может стать дорогостоящим, так как время, затраченное на планирование, повторное определение целей, анализа рисков и прототипирование, может быть чрезмерным.

Инкрементная модель проектного цикла. Эта модель в большинстве случаев применяется при проведении сложных опытно-конструкторских работ, которые требуют большого количества участников, множества различных вопросов, которые необходимо решить. Ее суть заключается в разбиении большого объема работ на последовательность более мелких составляющих частей. Она представляет собой процесс частичной реализации всей системы и медленного наращивания функциональных возможностей или эффективности.

Эта модель предполагает разбиение жизненного цикла проекта на последовательность итераций, каждая из которых напоминает “мини-проект”, включая все фазы жизненного цикла в применении к созданию меньших фрагментов функциональности, по сравнению с проектом, в целом. Цель каждой итерации - получение работающей версии программной системы, включающей функциональность, определенную интегрированным содержанием всех предыдущих и текущей итерации. Результаты финальной итерации содержит всю требуемую функциональность продукта.

Преимущества инкрементной модели.

Применяя инкрементную модель при разработке проекта, для которого она подходит в достаточной мере, можно убедиться в следующих ее преимуществах:

a Не требуется заранее тратить средства на разработку всего проекта.

b В результате выполнения каждого инкремента получается функциональный продукт.

c Использование последовательных инкрементов позволяет объединить полученные пользователями опыт в виде усовершенствованного продукта, затратив при этом намного меньше средств, чем требуется для выполнения повторной разработки.

d Правило по принципу «разделяй и властвуй» позволяет разбить возникшую проблему на управляемые части, благодаря чему предотвращается формирование громоздких перечней требований, выдвигаемых перед командой разработчиков.

e В процессе разработки можно ограничить количество персонала таким образом, чтобы над поставкой каждого инкремента, последовательно работала одна и та же команда.

f В конце каждой инкрементной поставки существует возможность пересмотреть риски, связанного с затратами и соблюдением установленного графика.

g Поскольку переход из настоящего в будущее не происходит моментально, заказчик может привыкать к новой технологии постепенно.

h Риск распределяется на несколько меньших по размеру инкрементов, и не сосредоточен в одном большом проекте разработки.

Недостатки инкрементной модели.

При использовании этой модели относительно проекта, для которого она подходит не в достаточной мере, проявляются следующие недостатки:

a В модели не предусмотрены итерации в рамках каждого инкремента.

b Определение полной функциональной системы должно осуществляться в начале жизненного цикла, чтобы обеспечить определение инкрементов.

c Заказчик должен осознавать, что общие затраты на выполнение проекта не будут снижены.

Лекция 2.

Понятие жизненного цикла и модели жизненного цикла. Каскадная модель ЖЦ. Поэтапная модель с промежуточным контролем. Спиральная модель ЖЦ . Процессы ЖЦ ПО . Rapid Application Development(RAD). Extreme Programming (XP). Rational Unified Process (RUP). Microsoft Solution Framework (MSF). Custom Development Method (методика Oracle).

2.1. Понятие жизненного цикла и модели жизненного цикла

Жизненный цикл ИС – период времени, который начинается с момента принятия решения о необходимости создания ИС и заканчивается в момент ее полного изъятия из эксплуатации. ЖЦ ИС можно представить как ряд событий, происходя­щих с системой в процессе ее создания и использования.

Под моделью жизненного цикла понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, которые осуществляются в ходе разработки, функционирования и сопровождения программного продукта в течение всей жизни системы, от определения требований до завершения ее использования. (слайд 2) .

Модель ЖЦ ПО включает в себя (слайд 3) :стадии, результаты выполнения работ на каждой стадии, ключевые события - точки завершения работ и принятия решений.

Под стади­ей понимается часть процесса создания ПО, ограниченная опре­деленными временными рамками и заканчивающаяся выпуском конкретного продукта (моделей, программных компонентов, до­кументации), определяемого заданными для данной стадии тре­бованиями.

Крайним случаем модели ЖЦ можно считать так называемую модель «черного ящика» (black box) или «code and fix» (кодиро­вание и исправление), что фактически означает отсутствие ка­кой-либо модели. В этом случае выделить какие-либо рациональные стадии в процессе разработки ПО не представля­ется возможным, поскольку отсутствует планирование и органи­зации работ.

В настоящее время известны и используются следующие модели жизненного цикла:

    Каскадная модель (характерна для периода 1970-1980 гг.);

    Поэтапная модель с промежуточным контролем (характерна для периода 1980-1985 гг.);

    Спиральная модель (характерна для периода после 1986 г.)

2.2. Каскадная модель жц

В1970 г. эксперт в области ПО Уинстон Ройс опубликовал по­лучившую широкую известность статью, в которой он излагал свое мнение о методике, которая позднее получила название «модель водопада» (waterfall model), или «каскадная модель» (слайд 4) .

Впосле­дствии эта модель была регламентирована множеством норма­тивных документов, в частности, широко известным стандартом Министерства обороны США Dod-STD-2167A и российскими стандартами серии ГОСТ 34.

Каскадная модель предусматривает последовательное выполнение всех этапов проекта в строго фиксированном порядке. Переход на следующий этап означает полное завершение работ на предыдущем этапе.

Принципиальными свойствами так называемой «чистой» каскадной модели являются следующие:

    Фиксация требований к системе до ее сдачи заказчику;

    Последовательное выполнение этапов.

    Переход на очередную стадию проекта только после того, как будет полностью завершена работа на текущей стадии, без возвратов на пройденные стадии.

    Отсутствие временного перекрытия этапов

    Отсутствие возврата к предыдущим этапам

    Наличие результата только в конце разработки.

Преимущества применения каскадной модели заключаются в следующем:

    на каждой стадии формируется законченный набор проект­ной документации, отвечающий критериям полноты и сог­ласованности;

    выполняемые в логичной последовательности стадии работ позволяют планировать сроки завершения всех работ и со­ответствующие затраты.

Основ­ным недостатком этого подхода является то, что реальный процесс созда­ния системы никогда полностью не укладывается в такую жесткую схему, постоянно возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений.

Другими недостатками каскадного подхода являются:

    позднее обнаружение проблем. Выявление и устранение ошибок производится только на стадии тестирования, которая может растянуться во времени или вообще никогда не завершиться.

    выход из календарного графика, запаздывание с получени­ем результатов;

    избыточное количество документации;

    невозможность разбить систему на части (весь продукт раз­рабатывается за один раз);

    высокий риск создания системы, не удовлетворяющей из­менившимся потребностям пользователей.

Исторически – это первая модель ЖЦ ИС. Применялась для достаточно простых ИС, когда каждое приложение представляло собой единый, функционально и информационно независимый блок. Сейчас каскадная модель может использоваться при создании ПО, для которого в самом начале разработку можно достаточно точно и полно сформулировать все требования, с тем, чтобы предоста­вить разработчикам свободу реализовать их технически как мож­но лучше.

Индустрия ПО развивается стремительными темпами, однако ни для кого не секрет, что процесс разработки еще очень далек от совершенства и для него характерно множество внутренних проблем. По данным исследования Standish Group (www.standishgroup.com), менее третьей части программных проектов оказываются успешными, остальные - либо не вписываются в финансовые и временны2е рамки, либо заканчиваются полным провалом.

Работающий в одиночку герой-
программист - анахронизм.

Эдвард Йордон

В упомянутом исследовании утверждается, что наиболее успешны небольшие проекты, а риск провала тем выше, чем они значительнее. Это свидетельствует о том, что с ростом масштабов задачи менеджеры не справляются с управлением выделенными ресурсами.

Собственно, проблема роста сложности управления в зависимости от увеличения размера организации далеко не нова, однако в программировании она приобретает новые очертания: если для реализации проекта в срок недостаточно ресурсов, то простое их увеличение только усугубит проблему и срок выполнения будет отодвинут еще дальше (речь идет прежде всего о человеческих ресурсах, поскольку остальные в программировании гораздо менее существенны).

Об этом впервые серьезно заговорили после выхода в 1975 г. книги Фредерика Брукса «Мифический человекомесяц», ставшей впоследствии классикой. Характерно, что она переиздается уже многие годы, и основные ее положения до сих пор остаются справедливыми. В своей более поздней работе Брукс выделил две составляющие сложности разработки ПО: трудности, присущие специфике создания ПО, и акцидентальные - в данном контексте такие, которые связаны с ограничениями уровня развития науки и техники. Вторые более или менее успешно преодолеваются на пути научно-технического прогресса, зато первые будут сопровождать разработку ПО всегда.

Эффективное управление любым процессом возможно при условии, что субъект управления адекватно воспринимает состояние и поведение объекта управления. В том, что касается создания ПО, это является весьма сложной задачей, поскольку процесс разработки - сугубо интеллектуальная, во многом творческая деятельность, для которой конвейерные либо другие им подобные методы неприменимы. Поэтому и были предприняты активные попытки представить модель процесса создания ПО, которая в максимальной степени смогла бы учесть присущие ему особенности и сделать его управляемым.

Модели на основе инженерного подхода

Модель «кодирование-устранение ошибок» . Она описывается следующим образом: 1) поставить задачу; 2) выполнять ее до успешного завершения либо отмены; 3) проверить результат; 4) повторить при необходимости с 1-го шага.

Естественно, такая модель никоим образом не структурировала процесс разработки, и говорить о возможности ее эффективного применения, особенно в крупных проектах, бессмысленно.

Каскадная модель . Первой моделью, получившей широкую известность и действительно структурирующей процесс разработки, является каскадная или водопадная. Она была создана после прошедшей в 1968 г. конференции NATO по вопросам науки и техники, где рассматривались подобные вопросы, и разделяет процесс создания программного продукта на последовательные этапы (следует отметить, что она уже применялась тогда различными разработчиками, однако ни количество, ни содержание этапов не унифицировалось).

Спустя непродолжительное время после своего появления на свет каскадная модель была доработана Уинстом Ройсом с учетом взаимозависимости этапов и необходимости возврата на предыдущие ступени, что может быть вызвано, например, неполнотой требований или ошибками в формировании задания. В таком «обратимом» виде каскадная модель просуществовала долгое время и явилась основой для многих проектов (рис. 1).

Однако практическое использование данной модели выявило множество ее недостатков, главный из которых состоял в том, что она больше подходит для традиционных видов инженерной деятельности, чем для разработки ПО. В частности, одной из самых больших проблем оказалась ее «предрасположенность» к возможным несоответствиям полученного в результате продукта и требований, которые к нему предъявлялись. Основная причина этого заключается в том, что полностью сформированный продукт появляется лишь на поздних этапах разработки, но так как работу на разных этапах обычно выполняли различные специалисты и проект передавался от одной группы к другой, то по принципу испорченного телефона оказывалось так, что на выходе получалось не совсем то, что предполагалось вначале.

V-образная модель . Была предложена именно для того, чтобы устранить недостатки каскадной модели, а название - V-образная, или шарнирная - появилось из-за ее специфического графического представления (рис. 2).

V-образная модель дала возможность значительно повысить качество ПО за счет своей ориентации на тестирование, а также во многом разрешила проблему соответствия созданного продукта выдвигаемым требованиям благодаря процедурам верификации и аттестации на ранних стадиях разработки (пунктирные линии на рисунке указывают на зависимость этапов планирования/постановки задачи и тестирования/приемки).

Однако в целом V-образная модель является всего лишь модификацией каскадной и обладает многими ее недостатками. В частности, и та и другая слабо приспособлены к возможным изменениям требований заказчика. Если процесс разработки занимает продолжительное время (иногда до нескольких лет), то полученный в результате продукт может оказаться фактически ненужным заказчику, поскольку его потребности существенно изменились.

В той же мере актуален и вопрос влияния научно-технического прогресса: требования к ПО выдвигаются с учетом текущего состояния научных и практических достижений в области аппаратно-программного обеспечения, однако IТ-сфера развивается очень быстро, и затянувшийся процесс разработки способен привести к созданию продукта, который базируется на устаревших технологиях и оказывается неконкурентоспособным еще до своего появления.

Важен также вопрос планирования показателей ожидаемой функциональности, поскольку в этих моделях он является не более чем допущением: в частности, определить, какую скорость обработки данных обеспечит создаваемый продукт либо сколько он будет занимать памяти, на этапе постановки задачи практически невозможно. Если подобные требования четко зафиксированы в условиях договора между заказчиком и исполнителем, то вполне вероятно, что полученное решение не будет им удовлетворять, хотя известно это станет только на завершающих этапах разработки, когда основные ресурсы уже израсходованы.

В итоге заказчик будет вынужден либо мириться с ограничениями созданного на основе рассмотренных моделей решения, либо дополнительно инвестировать средства, чтобы получить действительно то, что необходимо.

Модели, учитывающие специфику разработки ПО

Поскольку первые модели были заимствованы из традиционной инженерной области, они не учитывали в полной мере специфику производства ПО. Однако последующие модели были уже гораздо больше ориентированы на особенности этого вида деятельности, имеющего много принципиальных отличий от конструирования предметов материального мира.

Модель на основе создания прототипов . В связи с тем что заказчик достаточно часто не является специалистом в области ПО, он обычно плохо воспринимает «голые» спецификации продукта. Для того чтобы преодолеть информационный барьер между заказчиком и разработчиком и снизить риск получения продукта, который не соответствует выдвигаемым требованиям, стал применяться подход, направленный на создание прототипов, представляющих собой полностью или частично рабочие модели готовой системы. Он позволяет значительно улучшить взаимопонимание между всеми участниками процесса за счет последовательного, эволюционного развития системы на основе итеративного уточнения прототипов.

Применение последних подобно использованию уменьшенных макетов зданий в архитектуре - они дают возможность наглядно представить конечный результат, их построение и изменение гораздо менее трудоемко по сравнению с возведением и изменением самого здания.

Однако, несмотря не все преимущества, данная модель также не стала панацеей. Основные ее проблемы лежали в плоскости взаимоотношений «заказчик-исполнитель»: первый был заинтересован в создании как можно более подробных прототипов для того, чтобы снизить риск получения неадекватной системы, в то же время для второго каждый новый прототип означал дополнительные затраты времени и ресурсов, а в итоге - снижение рентабельности проекта.

Инкрементная модель . ПО в отличие, например, от микросхемы можно вводить в эксплуатацию по частям, а значит, разрабатывать и поставлять его заказчику также можно постепенно. Именно на этом основана инкрементная модель, предусматривающая дробление продукта на относительно независимые составляющие, которые разрабатываются и вводятся в эксплуатацию по отдельности.

Такая модель выгодна как для заказчика, так и для создателя системы, поскольку позволяет продвигаться вперед, соблюдая интересы обеих сторон. Однако у нее есть свои недостатки. Деление на функциональные блоки в целом замедляет процесс, так как возникает необходимость обеспечения их взаимодействия. Для многих решений этот метод неприменим, поскольку из них нельзя вычленить отдельные составляющие, которые могут быть поставлены и функционировать независимо. Существенно возрастает нагрузка и на руководящий персонал в связи с усложнением задач по координированию работ над отдельными составляющими системы, увеличивается стоимость внесения изменений в готовые компоненты, которые уже установлены и работают у заказчика.

Спиральная модель. Предложенная Барри Боэмом в 1988 г., она стала существенным прорывом в понимании природы разработки ПО, хотя, по большому счету, является объединением двух моделей: каскадной и на основе создания прототипов (рис. 3).

Спиральная модель Боэма сфокусирована на проектировании. Собственно разработка ПО происходит лишь на последнем витке спирали по обычной каскадной модели, однако этому предшествует несколько итераций проектирования на основе создания прототипов - при этом каждая итерация включает стадию выявления и анализа рисков и наиболее сложных задач.

Поскольку спиральная модель в основном охватывает именно проектирование, то в первоначальном виде она не получила широкого распространения в качестве метода управления всем жизненным циклом создания ПО. Однако главная ее идея, заключающаяся в том, что процесс работы над проектом может состоять из циклов, проходящих одни и те же этапы, послужила исходным пунктом для дальнейших исследований и стала основой большинства современных моделей процесса разработки ПО.

Современные модели

К середине 1990-х годов индустрия ПО стала достаточно развитой, сложные проекты успешно реализовывались с помощью приобретающей популярность объектно-ориентированной методологии, а команды разработчиков стали применять подходы, основанные на использовании наиболее значимых преимуществ предыдущих моделей.

Объектно-ориентированная модель . Данная методология предполагает конструирование программного решения из готовых объектов, для которых определяются правила их взаимодействия, переводящие объекты из одного состояния в другое. Такая модель, предусматривающая полное соответствие процесса разработки положениям объектно-ориентированной методологии (объектно-ориентированный анализ, проектирование, программирование), эффективна в крупных проектах, а также там, где применяются так называемые средства быстрой разработки (RAD, Rapid Application Development), основанные на этих технологиях и содержащие готовые библиотеки классов.

Однако сами по себе RAD-системы не располагают к созданию объектно-ориентированных решений. Программисты, избалованные инструментарием, позволяющим в считаные часы создавать из готовых компонентов продукты, на которые ранее уходили дни и месяцы работы, считают лишним утруждать себя детальным изучением методологии и UML, а уж тем более не стремятся оформлять свои решения в виде классов, пригодных для повторного использования.

Таким образом, объектно-ориентированная модель применяется преимущественно в очень крупных проектах, где уделяется должное внимание этапам анализа и проектирования, а также жестко контролируется соблюдение разработчиками установленных правил.

Итеративная модель . Впервые предложенная Филиппом Крачтеном в 1995 г., данная модель объединяет главные преимущества спиральной, инкрементной, каскадной моделей, а также методов разработки на основе создания прототипов и объектно-ориентированного подхода (рис. 4). Она завоевала большую популярность и в том или ином виде используется во многих современных проектах.

В соответствии с итеративной моделью имеются четыре основные фазы жизненного цикла разработки ПО (начало, исследование, построение и внедрение). На каждой фазе проект проходит множество итераций, приводящих к созданию работоспособных версий: на начальных создаются прототипы, уточняются требования, прорабатываются наиболее сложные проблемы; конечные приводят к созданию продукта, его совершенствованию и расширению функциональности.

Итеративная модель, помимо основных фаз, выделяет еще две группы процессов: рабочие (управление требованиями, анализ и проектирование, реализация, тестирование, развертывание) и вспомогательные (управление конфигурацией и изменениями, проектом и процессом). Количество и суть процессов варьируются в зависимости от потребностей разработчика, они также могут иметь свои циклы, которые не обязательно даже соответствуют основным фазам. Однако результатом рабочих процессов всегда является создание версий продукта.

Итеративная модель подобно спиральной дает возможность успешно справляться с рисками. Если во время работы над очередной версией будет установлено, что трудозатраты на реализацию необходимой функциональности слишком велики, то превышения бюджета и нарушения сроков можно будет избежать путем соотнесения приоритетов разработки и трудозатрат в начале каждой итерации. Таким образом, данная модель хорошо подходит для большинства типов программных проектов, но особенно ее преимущества заметны при работе над продуктами, предназначенными для выхода на свободный рынок, в силу изначальной ориентации на выпуск последовательных версий.

Филипп Крачтен долгое время работает в фирме Rational Software, которая сейчас принадлежит IBM. Именно по этой причине итеративная модель стала основой RUP (Rational Unified Process) - одного из наиболее распространенных методов комплексного управления процессом разработки ПО. На ее же основе разработан главный конкурент RUP со стороны Microsoft - MSF (Microsoft Solutions Framework), а также аналогичный подход компании Borland - ALM (Application Lifecycle Management).

Модели быстрой разработки . Множество ограничений в современных методологиях создания ПО привели к тому, что компании-разработчики во многом стали похожи на гигантские бюрократические системы. Наличие большого количества формальных процедур и правил существенно сужает свободу действий каждого конкретного программиста, превращает его в винтик в огромной и неповоротливой машине. Несмотря на то что подобные машины способны вполне успешно справляться со стоящими перед ними задачами, обычно их КПД довольно низок и удельная производительность отдельного разработчика настолько мала, что нормальным может считаться написание программистом нескольких строк кода в день.

Бросить вызов подобным перегруженным формальностями подходам призваны модели быстрой разработки, такие, как, например, экстремальное программирование. Их суть заключается в отказе от всего лишнего, что не относится непосредственно к созданию качественного программного продукта, а за основу берутся лишь наиболее эффективные методы создания ПО. Особое внимание уделяется вопросам взаимодействия с заказчиком, организации продуктивной работы и тестированию. Многие идеи быстрой разработки не были чем-то новым, например юнит-тесты уже давно применялись во многих проектах, однако собранные вместе и ставшие обязательными для применения, они возымели положительный эффект. Об этих методах в последнее время стали говорить все чаще, а их элементы начали заимствоваться многими классическими моделями.

В современных условиях быстрая разработка - это очень модный подход, и ее используют все активнее. Основное преимущество состоит в том, что сравнительно небольшие группы разработчиков способны справляться с проектами за то же время, которое необходимо при применении более традиционных методов командами на порядок большей численности.

Однако здесь имеются и свои недостатки, в частности быстрая разработка плохо подходит для крупных проектов и ориентирована в основном на небольшие и средние, кроме того, ее эффективное использование возможно только при условии, что создатели ПО обладают весьма высокой квалификацией и значительным опытом.

Адаптированные и комбинированные модели . На самом деле в процессе эволюции моделей жизненного цикла разработки ПО новые идеи не заменяли старые целиком и полностью. Более правильно считать, что каждая из них имеет собственную сферу применения. Кроме того, в каждом конкретном случае может оказаться, что не существует методики, которая идеально подходит для решения данной задачи. В этом случае менеджерам программных проектов следует рассмотреть варианты адаптации моделей под конкретные потребности либо применять комбинированные методы, включающие элементы различных подходов. Например, успех быстрой разработки привел к тому, что более консервативные модели переняли самые эффективные ее приемы и стали использовать их уже в рамках своих процессов.

Глава 2. Спецификация программного продукта

Выбор жизненного цикла программного продукта

Жизненный цикл ПП – это период времени, начинающийся с момента принятия решения по необходимости создания ПП и заканчивающийся его полным изъятием из эксплуатации.

Модель жизненного цикла ПО - структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении жизненного цикла. Модель жизненного цикла зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Модели жизненного цикла ПП

1. Водопадная (каскадная, последовательная) модель.

Водопадная модель жизненного цикла (англ. waterfall model) была предложена в 1970 г. Уинстоном Ройсом. Она предусматривает последовательное выполнение всех этапов проекта в строго фиксированном порядке. Переход на следующий этап означает полное завершение работ на предыдущем этапе. Требования, определенные на стадии формирования требований, строго документируются в виде технического задания и фиксируются на все время разработки проекта. Каждая стадия завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.

Этапы проекта в соответствии с каскадной моделью:

  • Формирование требований;
  • Проектирование;
  • Реализация;
  • Тестирование;
  • Внедрение;
  • Эксплуатация и сопровождение.

Преимущества:

Полная и согласованная документация на каждом этапе;

Легко определить сроки и затраты на проект.

Недостатки:

В водопадной модели переход от одной фазы проекта к другой предполагает полную корректность результата (выхода) предыдущей фазы. Однако неточность какого-либо требования или некорректная его интерпретация в результате приводит к тому, что приходится «откатываться» к ранней фазе проекта и требуемая переработка не просто выбивает проектную команду из графика, но приводит часто к качественному росту затрат и, не исключено, к прекращению проекта в той форме, в которой он изначально задумывался. По мнению современных специалистов, основное заблуждение авторов водопадной модели состоит в предположениях, что проект проходит через весь процесс один раз, спроектированная архитектура хороша и проста в использовании, проект осуществления разумен, а ошибки в реализации легко устраняются по мере тестирования. Эта модель исходит из того, что все ошибки будут сосредоточены в реализации, а потому их устранение происходит равномерно во время тестирования компонентов и системы. Таким образом, водопадная модель для крупных проектов мало реалистична и может быть эффективно использована только для создания небольших систем.



2. Итерационная модель.

Альтернативой последовательной модели является так называемая модель итеративной и инкрементальной разработки (англ. iterative and incremental development, IID), получившей также от Т. Гилба в 70-е гг. название эволюционной модели. Также эту модель называют итеративной моделью и инкрементальной моделью.

Модель IID предполагает разбиение жизненного цикла проекта на последовательность итераций, каждая из которых напоминает «мини-проект», включая все процессы разработки в применении к созданию меньших фрагментов функциональности, по сравнению с проектом в целом. Цель каждой итерации - получение работающей версии программной системы, включающей функциональность, определённую интегрированным содержанием всех предыдущих и текущей итерации. Результат финальной итерации содержит всю требуемую функциональность продукта. Таким образом, с завершением каждой итерации продукт получает приращение - инкремент - к его возможностям, которые, следовательно, развиваются эволюционно. Итеративность, инкрементальность и эволюционность в данном случае есть выражение одного и то же смысла разными словами со слегка разных точек зрения.

По выражению Т. Гилба, «эволюция - прием, предназначенный для создания видимости стабильности. Шансы успешного создания сложной системы будут максимальными, если она реализуется в серии небольших шагов и если каждый шаг заключает в себе четко определённый успех, а также возможность «отката» к предыдущему успешному этапу в случае неудачи. Перед тем, как пустить в дело все ресурсы, предназначенные для создания системы, разработчик имеет возможность получать из реального мира сигналы обратной связи и исправлять возможные ошибки в проекте».



Подход IID имеет и свои отрицательные стороны, которые, по сути, - обратная сторона достоинств. Во-первых, целостное понимание возможностей и ограничений проекта очень долгое время отсутствует. Во-вторых, при итерациях приходится отбрасывать часть сделанной ранее работы. В-третьих, добросовестность специалистов при выполнении работ всё же снижается, что психологически объяснимо, ведь над ними постоянно довлеет ощущение, что «всё равно всё можно будет переделать и улучшить позже».

3. V-образная модель.

V-образная модель была создана как итерационная разновидность каскадной модели. Целями итераций в этой модели является обеспечение процесса тестирования. Тестирование продукта обсуждается, проектируется и планируется на ранних этапах жизненного цикла разработки. План испытания приемки заказчиком разрабатывается на этапе планирования, а компоновочного испытания системы - на фазах анализа, разработки проекта и т.д. Этот процесс разработки планов испытания обозначен пунктирной линией между прямоугольниками V-образной модели. Помимо планов, на ранних этапах разрабатываются также и тесты, которые будут выполняться при завершении параллельных этапов.

4. Модель быстрого прототипирования.

Модель быстрого прототипирования предназначена для быстрого создания прототипов продукта с целью уточнения требований и поэтапного развития прототипов в конечный продукт. Скорость (высокая производительность) выполнения проекта обеспечивается планированием разработки прототипов и участием заказчика в процессе разработки.

Начало жизненного цикла разработки помещено в центре эллипса. Совместно с пользователем разрабатывается предварительный план проекта на основе предварительных требований. Результат начального планирования - документ, описывающий в общих чертах примерные графики и результативные данные.

Следующий уровень – создание исходного прототипа на основе быстрого анализа, проекта база данных, пользовательского интерфейса и некоторых функций. Затем начинается итерационный цикл быстрого прототипирования. Разработчик проекта демонстрирует очередной прототип, пользователь оценивает его функционирование, совместно определяются проблемы и пути их преодоления для перехода к следующему прототипу. Этот процесс продолжается до тех пор, пока пользователь не согласится, что очередной прототип в точности отображает все требования.

Получив одобрение пользователя, быстрый прототип преобразуют детальный проект, и систему настраивают на производственное использование. Именно на этом этапе настройки ускоренный прототип становится полностью действующей системой.

При разработке производственной версии программы, может понадобиться более высокий уровень функциональных возможностей, различные системные ресурсы, необходимых для обеспечения полной рабочей нагрузки, или ограничения во времени. После этого следуют тестирование в предельных режимах, определение измерительных критериев и настройка, а затем, как обычно, функциональное сопровождение.

5. Спиральная модель.

Спиральная модель (англ. spiral model) была разработана в середине 1980-х годов Барри Боэмом. Она основана на классическом цикле Деминга PDCA (plan-do-check-act). При использовании этой модели ПО создается в несколько итераций (витков спирали) методом прототипирования.

Каждая итерация соответствует созданию фрагмента или версии ПО, на ней уточняются цели и характеристики проекта, оценивается качество полученных результатов и планируются работы следующей итерации.

На каждой итерации оцениваются:

  • риск превышения сроков и стоимости проекта;
  • необходимость выполнения ещё одной итерации;
  • степень полноты и точности понимания требований к системе;
  • целесообразность прекращения проекта.

Важно понимать, что спиральная модель является не альтернативой эволюционной модели (модели IID), а специально проработанным вариантом. К сожалению, нередко спиральную модель либо ошибочно используют как синоним эволюционной модели вообще, либо (не менее ошибочно) упоминают как совершенно самостоятельную модель наряду с IID.

Схема работы спиральной модели выглядит следующим образом. Разработка вариантов продукта представляется как набор циклов раскручивающейся спирали. Каждому циклу спирали соответствует такое же количество стадий, как и в модели каскадного процесса. При этом, начальные стадии, связанные с анализом и планированием представлены более подробно с добавлением новых элементов. В каждом цикле выделяются четыре базовые фазы:

Определение целей, альтернативных вариантов и ограничений.

Оценка альтернативных вариантов, идентификация и разрешение рисков.

Разработка продукта следующего уровня.

Планирование следующей фазы.

«Раскручивание» проекта начинается с анализа общей постановки задачи на разработку ПО. Здесь на первой фазе определяются общие цели, устанавливаются предварительные ограничения, определяются возможные альтернативы подходов к решению задачи. Далее проводится оценка подходов, устанавливаются их риски. На шаге разработки создается концепция (видение) продукта и путей его создания. Следующий цикл начинается с планирования требований и деталей ЖЦ продукта для оценки затрат. На фазе определения целей устанавливаются альтернативные варианты требований, связанные с аранжировкой требований по важности и стоимости их выполнения. На фазе оценки устанавливаются риски вариантов требований. На фазе разработки спецификация требований (с указанием рисков и стоимости), готовится демо-версия ПО для анализа требований заказчиком.

Следующий цикл – разработка проекта – начинается с планирования разработки.

На фазе определения целей устанавливаются ограничения проекта (по срокам, объему финансирования, ресурсами т.д.), определяются альтернативы проектирования, связанные с альтернативами требований, применяемыми технологиями проектирования, привлечением субподрядчиков. На фазе оценки альтернатив устанавливаются риски вариантов, и делается выбор варианта для дальнейшей реализации. На фазе разработки выполняется проектирование и создается демо-версия, отражающая основные проектные решения.

Следующий цикл – реализация ПО – также начинается с планирования. Альтернативными вариантами реализации могут быть применяемые технологии реализации, привлекаемые ресурсы. Оценка альтернатив и связанных с ними рисков на этом цикле определяется степенью «отработанности» технологий и «качеством» имеющихся ресурсов.

Фаза разработки выполняется по каскадной модели с выходом – действующим вариантом (прототипом) продукта.

Отмечаются некоторые особенности спиральной модели:

  • До начала разработки ПО, есть несколько полных циклов анализа требований и проектирования.
  • Количество циклов модели (как в части анализа и проектирования, так и в части реализации) не ограничено и определяется сложностью и объемом задачи
  • В модели предполагаются возвраты на оставленные варианты при изменении стоимости рисков.

Спиральная модель (по отношению к каскадной) имеет следующие преимущества:

  • Более тщательное проектирование (несколько начальных итераций) с оценкой результатов проектирования, что позволяет выявить ошибки проектирования на более ранних стадиях.
  • Поэтапное уточнение требований в процессе выполнения итераций, что позволяет более точно удовлетворить требованиям заказчика
  • Участие заказчика в выполнении проекта с использованием прототипов программы. Заказчик видит, что и как создается, не выдвигает необоснованных требований, оценивает реальные объемы финансирования.
  • Планирование и управление рисками при переходе на следующие итерации позволяет разумно планировать использование ресурсов и обосновывать финансирование работ.
  • Возможность разработки сложного проекта «по частям», выделяя на первых этапах наиболее значимые требования.

Основные недостатки спиральной модели связаны с ее сложностью:

  • Сложность анализа и оценки рисков при выборе вариантов.
  • Сложность поддержания версий продукта (хранение версий, возврат к ранним версиям, комбинация версий)
  • Сложность оценки точки перехода на следующий цикл
  • Бесконечность модели – на каждом витке заказчик может выдвигать новые требования, которые приводят к необходимости следующего цикла разработки.

Спиральную модель целесообразно применять при следующих условиях:

  • Когда пользователи не уверены в своих потребностях или когда требования слишком сложны и могут меняться в процессе выполнения проекта и необходимо прототипирование для анализа и оценки требований.
  • Когда достижение успеха не гарантировано и необходима оценка рисков продолжения проекта.
  • Когда проект является сложным, дорогостоящим и обоснование его финансирования возможно только в процессе его выполнения
  • Когда речь идет о применении новых технологий, что связано с риском их освоения и достижения ожидаемого результата
  • При выполнении очень больших проектов, которые в силу ограниченности ресурсов можно делать только по частям.

Разработка ПО невозможна без понимания так называемого жизненного цикла программ. Рядовому юзеру это, может быть, и не нужно знать, но основные стандарты желательно усвоить (далее будет сказано, зачем это нужно).

Жизненный цикл что это такое в формальном понимании?

Под жизненным циклом любого принято понимать время его существования, начиная со стадии разработки и до момента полного отказа от использования в выбранной сфере применения вплоть до полного изъятия приложения из обихода.

Говоря простым языком, информационные системы в виде программ, баз данных или даже «операционок» являются востребованными только в случае актуальности данных и возможностей, ними предоставляемых.

Считается, что определение жизненного цикла ни в коей мере не применяется к тестовым приложениям, например, к бета-версиям, которые являются самыми неустойчивыми в работе. Сам же жизненный цикл ПО зависит от множества факторов, среди которых одну из главных ролей играет среда, в которой программа будет использоваться. Однако можно выделить и общие условия, применяемые при определении понятия жизненного цикла.

Начальные требования

  • постановка задачи;
  • анализ взаимных требований будущего ПО к системе;
  • проектирование;
  • программирование;
  • кодирование и компиляция;
  • тестирование;
  • отладка;
  • внедрение и сопровождение программного продукта.

Разработка ПО состоит из всех вышеупомянутых стадий и не может обойтись хотя бы без одной из них. Но для контроля для таких процессов установлены специальные стандарты.

Стандарты процессов жизненного цикла программного обеспечения

Среди систем, предопределяющих условия и требования, предъявляемые к таким процессам, сегодня можно назвать только три основных:

  • ГОСТ 34.601-90;
  • ISO/IEC 12207:2008;
  • Oracle CDM.

Для второго международного стандарта имеется российский аналог. Это ГОСТ Р ИСО/МЭК 12207-2010, отвечающий за системную и программную инженерию. Но жизненный цикл программного обеспечения, описываемый в обоих правилах, является идентичным по сути. Объясняется это достаточно просто.

Виды ПО и апдейты

Они, кстати, для большинства ныне известных программ мультимедиа являются средствами сохранения основных параметров конфигурации. Использование ПО такого типа, конечно, является достаточно ограниченным, но понимание общих принципов работы с теми же медиаплеерами не повредит. И вот, почему.

По сути-то, в них жизненный цикл программного обеспечения заложен только на уровне срока обновления версии самого проигрывателя или установки кодеков и декодеров. А звуковые и видео транскодеры являются неотъемлемыми атрибутами любой аудио или видеосистемы.

Пример на основе программы FL Studio

Изначально виртуальная студия-секвенсор FL Studio имела название Fruity Loops. Жизненный цикл ПО в его первичной модификации истек, но приложение несколько трансформировалось и приобрело нынешний вид.

Если говорить об этапах жизненного цикла, сначала на стадии постановки задачи задавалось несколько обязательных условий:

  • создание барабанного модуля по типу ритм-машин вроде Yamaha RX, но с применением one-shot-сэмплов или секвенций в формате WAV, записанных в студиях вживую;
  • интеграция в операционные системы Windows;
  • возможность экспорта проекта в форматах WAV, MP3 и OGG;
  • совместимость проектов с дополнительным приложением Fruity Tracks.

На стадии разработки были применены средства языков программирования «Си». Но платформа выглядела достаточно примитивно и не давала конечному пользователю необходимого качества звучания.

В связи с этим, на стадии тестирования и отладки разработчикам пришлось пойти по пути немецкой корпорации Steinberg и применить в требованиях к основному звуковому драйверу поддержку режима Full Duplex. Качество саунда стало выше и позволило изменять темп, высоту тона и накладывать дополнительные FX-эффекты в режиме реального времени.

Завершением жизненного цикла этого ПО принято считать выход первой официальной версии FL Studio, которая, в отличие от своих прародителей, обладала уже интерфейсом полноценного секвенсора с возможностью редактирования параметров на виртуальном 64-канальном микшерном пульте с неограниченным добавлением аудио-дорожек и MIDI-треков.

Этим не ограничилось. На стадии управления проектом была введена поддержка подключения плагинов формата VST (сначала второй, а потом и третьей версии), в свое время разработанного компанией Steinberg. Грубо говоря, любой виртуальный синтезатор, поддерживающий VST-host мог подключаться к программе.

Неудивительно, что вскоре любой композитор мог использовать аналоги «железных» моделей, например, полные комплекты звуков некогда популярного Korg M1. Дальше - больше. Применение модулей вроде Addictive Drums или универсального плагина Kontakt позволило воспроизводить живые звуки реальных инструментов, записанных со всеми оттенками артикуляции в профессиональных студиях.

При этом разработчики постарались добиться и максимального качества, создав поддержку для драйверов ASIO4ALL, которые оказались на голову выше режима Full Duplex. Соответственно, повысился и битрейт. На сегодняшний день качество экспортируемого звукового файла может составлять 320 кбит/с при частоте дискретизации 192 кГц. А это профессиональный звук.

Что же касается начальной версии, ее жизненный цикл можно было бы назвать полностью законченным, но такое утверждение является относительным, поскольку приложение только сменило название и обрело новые возможности.

Перспективы развития

Что собой представляют этапы жизненного цикла программного обеспечения, уже понятно. Но вот о развитии таких технологий стоит сказать отдельно.

Не нужно говорить, что любой разработчик программного обеспечения не заинтересован в создании мимолетного продукта, который едва ли удержится на рынке в течение нескольких лет. В перспективе все смотрят на долгосрочное его использование. Достигаться это может разными способами. Но, как правило, практически все они сводятся к выпуску обновлений или новых версий программ.

Даже в случае с ОС Windows такие тенденции можно заметить невооруженным взглядом. Вряд ли сегодня найдется хоть один юзер, использующий системы вроде модификаций 3.1, 95, 98 или Millennium. Их жизненный цикл закончился после выхода версии XP. Но вот серверные версии на основе технологий NT все еще актуальны. Даже Windows 2000 на сегодняшний день является не только весьма актуальной, но и по некоторым параметрам установки или безопасности даже превосходящей самые новые разработки. То же самое касается системы NT 4.0, а также специализированной модификации Windows Server 2012.

Но по отношению именно к этим системам все равно заявлена поддержка на самом высоком уровне. А вот нашумевшая в свое время Vista явно испытывает закат цикла. Мало того, что она оказалась недоработанной, так еще и ошибок в ней самой и прорех в ее системе безопасности было столько, что остается только догадываться о том, как можно было выпустить на рынок программных продуктов такое несостоятельное решение.

Но если говорить о том, что развитие ПО любого типа (управляющего или прикладного) не стоит на месте, можно только Ведь сегодня дело касается не только компьютерных систем, а и мобильных устройств, в которых применяемые технологии зачастую опережают компьютерный сектор. Появление процессорных чипов на основе восьми ядер - чем не самый лучший пример? А ведь еще далеко не каждый ноутбук может похвастаться наличием такого «железа».

Некоторые дополнительные вопросы

Что же касается понимания жизненного цикла программного обеспечения, сказать, что он закончился в некоторый определенный момент времени, можно весьма условно, ведь программные продукты все равно имеют поддержку со стороны разработчиков, их создававших. Скорее окончание относится к устаревшим приложениям, которые не отвечают требованиям современных систем и не могут работать в их среде.

Но даже с учетом технического прогресса многие из них уже в ближайшее время могут оказаться несостоятельными. Вот тогда и придется принимать решение либо о выпуске обновлений, либо о полном пересмотре всей концепции, изначально заложенной в программный продукт. Отсюда - и новый цикл, предусматривающий изменение начальных условий, среды разработки, тестирования и возможного долгосрочного применения в определенной сфере.

Но в компьютерных технологиях сегодня отдается предпочтение развитию автоматизированных систем управления (АСУ), которые применяются на производстве. Даже операционные системы, в сравнении со специализированными программами, проигрывают.

Те же среды на основе Visual Basic остаются намного более популярными, нежели Windows-системы. А о прикладном ПО под UNIX-системы речь не идет вообще. Что говорить, если практически все коммуникационные сети тех же Соединенных Штатов работают исключительно на них. Кстати, системы вроде Linux и Android тоже изначально создавались именно на этой платформе. Поэтому, скорее всего, у UNIX перспектив намного больше, чем у остальных продуктов вместе взятых.

Вместо итога

Остается добавить, что в данном случае приведены только общие принципы и этапы жизненного цикла программного обеспечения. На самом деле даже начально поставленные задачи могут разниться очень существенно. Соответственно, различия могут наблюдаться и на остальных стадиях.

Но основные технологии разработки программных продуктов с их последующим сопровождением должны быть понятны. В остальном же следует учитывать и специфику создаваемого ПО, и среды, в которых оно предположительно должно работать, и возможности программ, предоставляемые конечному пользователю или производству, и многое другое.

К тому же, иногда жизненные циклы могут зависеть от актуальности средств разработки. Если, допустим, какой-то язык программирования устаревает, никто же не будет писать программы на его основе, и уж тем более - внедрять их в автоматизированные системы управления на производстве. Тут уже на первый план выходят даже не программисты, а маркетологи, которые должны своевременно реагировать на изменения компьютерного рынка. И таких специалистов в мире найдется не так уж и много. Высококвалифицированные кадры, способные держать руку на пульсе рынка, становятся наиболее востребованными. И именно они зачастую являются так называемыми «серыми кардиналами», от которых зависит успех или проигрыш определенного программного продукта в сфере IT.

Пусть они не всегда понимают суть программирования, зато четко способны определить модели жизненного цикла программного обеспечения и продолжительности времени их применения, исходя из мировых тенденций в этой области. Эффективный менеджмент зачастую дает более ощутимые результаты. Да хотя бы PR-технологии, реклама и т. д. Может какое-то приложение пользователю и не нужно, зато при условии его активного афиширования юзер установит его. Это уже, так сказать, подсознательный уровень (тот же эффект 25-го кадра, когда информация закладывается в сознание юзера независимо от него самого).

Конечно, такие технологии в мире являются запрещенными, однако многие из нас даже не догадываются о том, что они все равно могут использоваться и воздействовать на подсознание определенным способом. Чего только стоит «зомбирование» новостными каналами или интернет-сайтами, не говоря уже о применении более мощных средств, вроде воздействия инфразвуком (такое было применено в одной оперной постановке), вследствие чего человек может испытывать страх или неадекватные эмоции.

Возвращаясь к программному обеспечению, стоит добавить, что некоторые программы при запуске используют звуковой сигнал, привлекающий внимание юзера. И, как показывают исследования, такие приложения оказываются более жизнеспособными, в сравнении с другими программами. Естественно, увеличивается и жизненный цикл ПО, без разницы, какая функция на него возложена изначально. И этим, к сожалению, пользуются многие разработчики, что вызывает сомнения в законности таких методов.

Но не нам судить об этом. Возможно, в ближайшее время будут разработаны средства, определяющие такие угрозы. Пока это только теория, но, как считают некоторые аналитики и эксперты, до практического применения осталось совсем немного. Если уже создают копии нейронных сетей человеческого мозга, то что говорить?


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча