21.09.2019

Значение стохастический процесс в современном толковом словаре, бсэ. Стохастические, расходящиеся и сходящиеся процессы


Не может быть определен по изначальному состоянию системы.

  • В математике стохастическая матрица - это матрица , в которой все столбцы и/или строки - ряды неотрицательных действительных чисел, дающих в сумме.
  • В физике, стохастический резонанс - это проявление эффекта допорогового периодического сигнала, из-за добавления беспорядочного (шумового) воздействия, имеющего определённую оптимальную амплитуду, при которой проявление наиболее сильно́.
  • В музыке. Стохастическая музыка - по Хиллеру - это название такого вида композиционной техники, при котором законы теории вероятности определяют факт появления тех или иных элементов композиции при заранее обусловленных общих формальных предпосылках. В 1956 году, Янис Ксенакис ввел свой термин «стохастическая музыка», для описания музыки, основанной на законах вероятностей и законах больших чисел.
  • Стохастические системы - это системы, изменение в которых носит случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

    Стохастический: Определение процесса, определяемого рядом наблюдений.

    См. также


    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Стохастический" в других словарях:

      - [гр. stochastikos умеющий угадывать] случайный, вероятностный, беспорядочный, непредсказуемый. Словарь иностранных слов. Комлев Н.Г., 2006. стохастический (гр. stochasis догадка) случайный, или вероятностный, напр, с. процесс процесс, характер… … Словарь иностранных слов русского языка

      Вероятностный, случайный; непредсказуемый. Ant. закономерный, обязательный Словарь русских синонимов. стохастический прил., кол во синонимов: 4 беспорядочный (44) … Словарь синонимов

      Большой Энциклопедический словарь

      Управляемый законами теории вероятностей, случайный. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

      Англ. stochastic; нем. stochastisch. В статистике случайный или вероятный; напр., С. процесс процесс, характер изменения к рого во времени точно предсказать невозможно. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

      стохастический - ая, ое. stochastique, нем. stochastisch <гр. stochasis догадка. мат. Случайный, происходящий с вероятностью, которую невозможно предсказать. С.процесс. Стохастичность и, ж. Крысин 1998. Лекс. БСЭ 2: стохасти/ческий … Исторический словарь галлицизмов русского языка

      стохастический - tikimybinis statusas T sritis automatika atitikmenys: angl. stochastic vok. stochastisch rus. стохастический pranc. stochastique ryšiai: sinonimas – stochastinis … Automatikos terminų žodynas

      Ая, ое [греч. stochasis догадка] Книжн. Случайный, вероятностный, возможный. С ие изменения в экономике. С. процесс эволюции природы. * * * стохастический (от греч. stochastikós умеющий угадывать), случайный, вероятностный … Энциклопедический словарь

      Стохастический - то есть случайный, не имеющий очевидной закономерной причины … Физическая Антропология. Иллюстрированный толковый словарь.

      Стохастический - (от греч. stochastikos умеющий угадывать) случайный, вероятностный … Начала современного естествознания

    Книги

    • , Ф. С. Насыров. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…
    • Локальные времена, симметричные интегралы и стохастический анализ , Насыров Ф.С.. Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для…

    Это процесс, поведение которого не является детерминированным , и последующее состояние такой системы описывается как величинами, которые могут быть предсказаны, так и случайными. Однако, по М. Кацу и Э. Нельсону , любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет случайным процессом (иными словами, все процессы, имеющие развитие во времени, с точки зрения теории вероятностей, стохастические).

    Стохастичность в математике

    Использование термина стохастичность в математике относят к работам Владислава Борцкевича , который использовал его в значении выдвигать гипотезы , которое, в свою очередь, отсылает нас к древнегреческим философам, а также к работе Я. Бернулли Ars Conjectandi (лат. искусство загадывать) .

    Область исследований случайных в математике , особенно в теории вероятностей , играет большую роль.

    Использование методов Монте-Карло требует большого числа случайных величин, что, как следствие, привело к развитию

    Стохастичность (др.-греч. στόχος - цель, предположение) означает случайность. Стохастический процесс - это процесс, поведение которого не является детерминированным, и последующее состояние такой системы описывается как величинами, которые могут быть предсказаны, так и случайными. Однако, по М. Кацу и Э. Нельсону, любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет стохастическим процессом (иными словами, все процессы, имеющие развитие во времени, с точки зрения теории вероятностей, стохастические).

    Примером реального стохастического процесса в нашем мире может служить моделирование давления газа при помощи Винеровского процесса. Несмотря на то, что каждая молекула газа движется по своему строго определённому пути (в данной модели, а не в реальном газе), движение совокупности таких молекул практически нельзя просчитать и предсказать. Достаточно большой набор молекул будет обладать стохастическими свойствами, такими как наполнение сосуда, выравнивание давление, движение в сторону меньшего градиента концентрации и т. д. Таким образом проявляется эмерджентность системы.

    Метод Монте-Карло получил распространение благодаря физикам Станиславу Уламу, Энрико Ферми, Джону фон Нейману и Николасу Метрополису. Название произошло от казино в городе Монте Карло, Монако, где дядя Улама занимал деньги для игры. Использование природы случайностей и повторов для изучения процессов аналогично деятельности, происходящей в казино.

    Методы проведения расчётов и экспериментов на основе случайных процессов как формы стохастического моделирования применялись ещё на заре развития теории вероятностей (напр. Задача Буффона и работах по оценке малых выборок Уильяма Госсета), но наиболее развились в предкомпьютерную эру. Отличительной чертой методов моделирования Монте-Карло является то, что сначала идёт поиск вероятностного аналога (см. алгоритм имитации отжига). До этого методы моделирования шли в противоположном направлении: моделирование использовалось для того, чтобы проверить результат полученной ранее детерминированной проблемы. И хотя подобные подходы существовали до этого, они не были общими и популярными до тех пор, пока не появился метод Монте-Карло.

    Возможно, наиболее известное из ранних применений подобных методом принадлежит Энрико Ферми, который в 1930 году использовал стохастические методы для расчёта свойств только что открытого нейтрона. Методы Монте-Карло широко использовались в ходе работы над манхэттенским проектом, несмотря на то, что возможности вычислительных машин были сильно ограничены. По этой причине только с появлением компьютеров методы Монте-Карло начали широко распространяться. В 1950х их использует Лос-Аламосская национальная лаборатория для создания водородной бомбы. Широкое распространения методы получили в таких областях, как Физика, Физическая химия и Исследование операций.

    Использование методов Монте-Карло требует большого числа случайных величин, что, как следствие, привело к развитию генераторов псевдослучайных чисел, которые были намного быстрее, чем табличные методы генерации, которые ранее использовались для статистической выборки.

    Изучение статистических закономерностей - важнейшая познавательная задача статистики, которую она решает с помощью особых методов, видоизменяющихся в зависимости от характера исходной информации и целей познания. Знание характера и силы связей позволяет управлять социально-экономическими процессами и предсказывать их развитие.

    Среди многих форм связей важнейшей является причинная, определяющая все другие формы. Сущность причинности состоит в порождении одного явления другим. Вместе с тем, причина сама по себе еще не определяет следствия, она зависит также от условий, в которых протекает действие причины. Для возникновения следствия нужны все определяющие его факторы - причина и условия. Необходимая обусловленность явлений множеством факторов называется детерминизмом.

    Объектами исследования при статистическом измерении связей служит, как правило, детерминированность следствия факторами (причиной и условиями). Признаки по их значению для изучения взаимосвязи делятся на два класса. Признаки, являющиеся причиной изменения других, связанных с ними признаков, называют факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными.

    Связи между явлениями и их признаками классифицируют по степени тесноты связи, направлению и аналитическому выражению.

    Между различными явлениями и их признаками необходимо, прежде всего, выделить два типа связей: функциональную (жестко детерминированную) и статистическую (стохастически детерминированную).

    Связь признака "y" с признаком "x" называется функциональной, если каждому возможному значению независимого признака "x" соответствует одно или несколько строго определенных значений зависимого признака "y". Определение функциональной связи может быть легко обобщено для случая многих признаков x 1 ,x 2 ,...,x n .

    Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющих значение зависимого (результативного) признака, а также точный механизм их влияния, выраженный определенным уравнением.

    Функциональную связь можно представить уравнением: y i =f(x i), где y i - результативный признак (i = 1, ...,n); f(x i) - известная функция связи результативного и факторного признаков; x i - факторный признак.

    Чаще всего функциональные связи наблюдаются в явлениях, описываемых математикой, физикой и другими точными науками. Имеют место функциональные связи и в социально-экономических процессах, но довольно редко (они отражают взаимосвязь только отдельных сторон сложных явлений общественной жизни). В экономике примером функциональной связи может служить связь между оплатой труда у и количеством изготовленных деталей х при простой сдельной оплате труда.

    В реальной общественной жизни, ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стохастической.

    Стохастическая связь – это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин x 1 ,x 2 ,...,x n , (случайных или неслучайных) изменением закона распределения. Это обусловливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.

    Характерной особенностью стохастических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице (причем не известен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком).

    Модель стохастической связи может быть представлена в общем виде уравнением: ŷ i = f(x i) + ε i , где ŷ i - расчетное значение результативного признака; f(x i ) - часть результативного признака, сформировавшаяся под воздействием учтенных известных факторных признаков (одного или множества), находящихся в стохастической связи с признаком; ε i - часть результативного признака, возникшая вследствие действия неконтролируемых или неучтенных факторов, а также измерения признаков, неизбежно сопровождающегося некоторыми случайными ошибками.

    Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся и зависимость, если она имеет существенную силу, проявится достаточно отчетливо.

    В социально-экономической жизни приходится сталкиваться со многими явлениями, имеющими вероятностный характер. Например, уровень производительности труда рабочих стохастически связан с целым комплексом факторов: квалификацией, стажем работы, уровнем механизации и автоматизации производства, интенсивностью труда, простоями, состоянием здоровья работника, его настроением, атмосферным давлением и другими. Полный перечень факторов определить практически невозможно.

    Частным случаем стохастической связи является корреляционная связь, при которой среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины х или других случайных величин x 1 ,x 2 ,...,x n . Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционных связей присуще многим общественным явлениям.

    В зависимости от направления действия функциональные и стохастические связи могут быть прямыми и обратными. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, т.е. с увеличением факторного признака увеличивается и результативный, и наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда – прямая связь. А чем выше производительность труда, тем ниже себестоимость единицы продукции – обратная связь.

    По аналитическому выражению (форме) связи могут быть прямолинейными и нелинейными (криволинейными). При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически - прямой линией. Отсюда ее более короткое название - линейная связь.

    При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).

    По количеству факторов, действующих на результативный признак, связи различаются однофакторные (один фактор) и многофакторные (два и более факторов). Однофакторные (простые) связи обычно называются парными (так как рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, т.е. одновременно и во взаимосвязи, например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками.

    С помощью множественной корреляции можно охватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.

    Определение

    X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

    где T {\displaystyle T} произвольное множество , называется случайной функцией .

    Терминология

    Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

    Классификация

    • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
    • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
    • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
    • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
    • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
    • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
    • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
    • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
    • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
    • Среди случайных процессов выделяют импульсные случайные процессы .

    Траектория случайного процесса

    Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} .

    "Стохастический" – это слово, которое физики, математики и другие ученые используют для описания процессов, обладающих элементом случайности. Происхождение его древнегреческое. В переводе оно означает "умеющий угадывать".

    Значение слова "стохастический"

    "Стохастический" - это понятие, которое используется во множестве различных областей науки. Оно означает случайность, хаотичность, неопределенность чего-либо. В этике Аристотеля (его скульптурный портрет представлен выше) понятие "стохастический" – это определение, относящееся к способности угадывать. Очевидно, математики употребляли его на том основании, что элемент случайности появляется как раз при необходимости угадывать. Слово "стохастический" – это понятие, которое определено в "Новом международном словаре" как "предположительный".

    Таким образом, можно заметить, что техническое значение данного понятия не точно соответствует его словарному (лексическому) значению. Некоторые авторы используют выражение "стохастический процесс" как синоним понятия "случайный процесс".

    Стохастичность в математике

    Употребление данного термина в математике в настоящее время широко распространено. К примеру, существует такое понятие в теории вероятности, как стохастический процесс. Его итог нельзя определить по изначальному состоянию данной системы.

    Употребление в математике понятия "стохастичность" относят к трудам Владислава Борцкевича. Именно он использовал данный термин в значении "выдвигать гипотезы". В математике, в особенности в таком разделе этой науки, как теория вероятности, область случайных исследований играет большую роль. Существует, к примеру, такое понятие, как стохастическая матрица. Колонки или строки данной матрицы в сумме дают единицу.

    Стохастическая математика (финансовая)

    Данный раздел математики анализирует финансовые структуры, действующие в условиях неопределенности. Он призван находить самые рациональные методы управления финансовыми средствами и структурами, учитывая такие факторы, как стохастическая эволюция, риск, время и др.

    В науке принято выделять следующие структуры и объекты, которые используются в финансовой математике в целом:

    • фирмы (к примеру, компании);
    • индивидуумы;
    • посреднические структуры (пенсионные фонды, банки);
    • финансовые рынки.

    Основным объектом изучения финансовой математики стохастической является именно последний из них. Данный раздел базируется на таких дисциплинах, как статистика случайных процессов, теория случайных процессов и др.

    В настоящее время даже людям, далеким от науки, хорошо известно по многочисленным новостям и публикациям в СМИ, что значения так называемых глобальных финансовых индексов (например, индекса Доу Джонса), цены акций меняются хаотически. Л. Башелье предпринял первую попытку описать с использованием математики эволюцию стоимости акций. Его стохастический метод опирается на теорию вероятностей. Диссертация Л. Башелье, где представлена эта попытка, была опубликована в 1900 году. Ученый доказал формулу, известную в настоящее время как формула справедливой стоимости опциона-колл. В ней отражается стохастическая вероятность.

    Важные идеи, которые в дальнейшем привели к возникновению теории эффективного рынка, были изложены в труде М. Кендалла, изданном в 1953 году. В этой работе рассматривается вопрос динамики цен акций. Исследователь описывает ее с помощью стохастических процессов.

    Стохастичность в физике

    Благодаря физикам Э. Ферми, С. Уламу, Н. Метрополису и Д. Нейману большое распространение получил метод Монте-Карло. Его название произошло от казино, расположенного в одноименном городе такой страны, как Монако. Именно здесь занимал деньги для игры дядя Улама. Использование природы повторов и случайностей для изучения процессов является аналогичным происходящей в казино деятельности.

    При применении данного метода моделирования сначала происходит поиск вероятностного аналога. До этого моделирование осуществлялось в противоположном направлении: оно использовалось для проверки результата детерминированной проблемы, полученной ранее. И хотя и до открытия метода Монте-Карло существовали подобные подходы, они не были популярными и общими.

    Энрико Ферми в 1930 году применил стохастические приемы для расчета свойств нейтрона, в то время только что обнаруженного. Методы Монте-Карло в дальнейшем использовались при работе над манхэттенским проектом, хотя в то время были существенно ограничены возможности вычислительных машин. По этой причине они получили широкое распространение только после того, как появились компьютеры.

    Стохастические сигналы

    Регулярные и стохастические сигналы имеют разные формы колебаний. Если повторно измерить последние, мы получим колебания, имеющие новую форму, которая отлична от предыдущей, однако проявляет определенное сходство в существенных чертах. Пример стохастического сигнала – запись колебаний волн моря.

    Почему же вообще необходимо вести речь об этих достаточно необычных сигналах? Дело в том, что при изучении автоматических систем они встречаются даже чаще, чем предсказуемые.

    Стохастичность и искусственный интеллект

    Стохастические программы в сфере искусственного интеллекта работают с применением вероятностных методов. В качестве примера можно привести такие алгоритмы, как стохастическая оптимизация или нейронные сети. Это же относится к имитации отжига и генетическим алгоритмам. Во всех этих случаях стохастичность может содержаться в проблеме как таковой или же в планировании чего-либо в условии неопределенности. Детерминированное окружение для агента моделирования является более простым, чем стохастическое.

    Итак, как мы видим, интересующее нас понятие используется во многих областях науки. Мы перечислили и охарактеризовали лишь основные сферы его применения. Изучение всех этих процессов, согласитесь, очень важно и актуально. Именно поэтому интересующее нас понятие, вероятно, будет еще долго использоваться в науке.


    © 2024
    art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча