28.09.2019

Круговорот и биогеохимические циклы веществ. Что такое биологический круговорот веществ


Круговорот элементов в неживой природе

Круговорот веществ в большом геологическом круговороте.

Большой геологический круговорот

Большой геологический круговорот минеральных веществ и воды протекает под действием огромного количества абиотических факторов.

Согласно теории литосферных плит, внешняя оболочка Земли состоит из нескольких очень больших блоков (плит). Эта теория предполагает существование горизонтальных перемещений мощных литосферных плит, толщиной 100 – 150 км.

При этом в пределах срединно-океанических хребтов, так называемой зоны рифтов. Происходят разрыв и раздвигание литосферных плит с образованием молодой океанической коры

Это явление называется спредингом океанического дна. Т.о., из глубин мантии поднимается поток минеральных веществ, образующий молодые кристаллические породы.

В противовес этому процессу в зоне глубоководных океанических желобов постоянно происходит надвигание одной части континентальной коры на другую, что сопровождается погружением периферийной части плиты в мантию, т.е., часть твёрдого вещества земной коры переходит в состав мантии Земли. Процесс, происходящий в океанических глубоководных желобах, назван субдукцией океанической коры.

Круговорот воды на планете действует непрерывно и повсеместно. Движущие силы круговорота воды – тепловая энергия и сила тяжести. Под влиянием тепла происходят испарение, конденсация водяных паров и другие процессы, на что расходуется около 50% энергии, поступающей от солнца. Под влиянием силы тяжести – падение капель дождя, течение рек, движение почвенных и подземных вод. Часто эти причины действуют совместно, например, на атмосферную циркуляцию воды действуют как тепловые процессы, так и сила тяжести.

Осуществляется двумя путями: водной и воздушной миграцией. К воздушным мигрантам относят: кислород, водород, азот, йод.

К водным мигрантам относят те вещества, которые мигрируют преимущественно в почвах, поверхностных и подземных водах в основном в виде молекул и ионов: натрий, магний, алюминий, кремний, фосфор, сера, хлор, калий, марганец, железо, кобальт, никель, стронций, свинец и др. Воздушные мигранты входят также в состав солей, которые мигрируют в воде. Однако воздушная миграция для них более типична.

Масса живого вещества биосферы сравнительно мала. Если её распределить по земной поверхности, то получиться слой всего в 1,5 см. В таблице 4.1 сопоставлены некоторые количественные характеристики биосферы и других геосфер Земли. Биосфера, составляя менее 10-6 массы других оболочек планеты, обладает несравненно большим разнообразием и обновляет свой состав в миллион раз быстрее.



Таблица 4.1

Сравнение биосферы с другими геосферами Земли

*Живое вещество в расчёте на живой вес

4.4.1. Функции биосферы

Благодаря биоте биосферы осуществляется преобладающая часть химических превращений на планете. Отсюда суждение В.И. Вернадского об огромной преобразующей геологической роли живого вещества. На протяжении органической эволюции живые организмы тысячекратно (для разных круговоротов от 103 до 105 раз) пропустили через себя, через свои органы, ткани, клетки, кровь всю атмосферу, весь объём Мирового океана, большую часть массы почв, огромную массу минеральных веществ. И не только пропустили, но и в соответствии со своими потребностями видоизменили земную среду.

Благодаря способности трансформировать солнечную энергию в энергию химических связей растения и другие организмы выполняют ряд фундаментальных биогеохимических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в смене восстановительной среды на окислительную в геохимической эволюции планеты и в формировании газового состава современной атмосферы. Растения строго контролируют концентрации О2 и СО2, оптимальные для совокупности всех современных живых организмов.

Концентрационная функция. Пропуская через своё тело большие объёмы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию (движение химических веществ) и концентрирование химических элементов и их соединений. Это относится к биосинтезу органики, образование коралловых островов, строительство раковин и скелетов, появление толщ осадочных известняков, месторождений некоторых металлических руд, скопление железно–марганцевых конкреций, на дне океана т. д. Ранние этапы биологической эволюции проходили в водной среде. Организмы научились извлекать из разбавленного водного раствора необходимые для них вещества, многократно увеличивая их концентрацию в своём теле.

Окислительно – восстановительная функция живого вещества тесно связана с биогенной миграцией элементов и концентрированием веществ. Многие вещества в природе устойчивы и не подвергаются окислению при обычных условиях, например, молекулярный азот – один из важнейших биогенных элементов. Но живые клетки располагают настолько мощными катализаторами – ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может проходить в абиотической среде.

Информационная функция живого вещества биосферы. Именно с появлением первых примитивных живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мёртвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путём соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и перерабатывать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором. Суммарный запас генетической информации биоты оценивается в 1015 бит. Общая мощность потока молекулярной информации, связанной с обменом веществ и энергии во всех клетках глобальной биоты достигает 1036 бит/с (Горшков и др., 1996).

4.4.2. Составляющие биологического круговорота.

Биологический круговорот осуществляется между всеми составляющими биосферы (т. е. между почвой, воздухом, водой, животными, микроорганизмами и т.д.). Он происходит при обязательном участии живых организмов.

Достигающее биосферы солнечное излучение несёт в себе энергию около 2,5*1024 Дж в год. Только 0,3% её непосредственно преобразуется в процессе фотосинтеза в энергию химических связей органических веществ, т.е. вовлекается в биологический круговорот. А 0,1 – 0,2 % солнечной энергии, падающей на Землю, оказывается заключённой в чистой первичной продукции. Дальнейшая судьба этой энергии связана с передачей органического вещества пищи по каскадам трофических цепей.

Биологический круговорот условно можно разделить на взаимосвязанные составляющие: круговорот веществ и энергетический круговорот.

4.4.3. Энергетический круговорот. Трансформация энергии в биосфере

Экосистему можно описать как совокупность живых организмов, обменивающихся непрерывно энергией, веществом, информацией. Энергию можно определить как способность производить работу. Свойства энергии, в том числе и движение энергии в экосистемах, описываются законами термодинамики.

Первый закон термодинамики или закон сохранения энергии утверждает, что энергия не исчезает и не создаётся заново, она лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше её энтропия.

Говоря другими словами, живое вещество получает и трансформирует энергию космоса, солнца в энергию земных процессов (химическую, механическую, тепловую, электрическую). Вовлекает эту энергию и неорганическую материю в непрерывный круговорот веществ в биосфере. Поток энергии в биосфере имеет одно направление – от Солнца через растения (автотрофы) к животным (гетеротрофы). Природные нетронутые экосистемы в устойчивом состоянии с постоянными важнейшими экологическими показателями (гомеостаз), являются наиболее упорядоченными системами, и характеризуются наименьшей энтропией.

4.4.4. Круговорот веществ в живой природе

Образование живого вещества и его разложение – две стороны единого процесса, который называется биологическим круговоротом химических элементов. Жизнь – круговорот химических элементов между организмами и средой.

Причина круговорота – ограниченность элементов, из которых строятся тела организмов. Каждый организм извлекает из окружающей среды необходимые для жизнедеятельности вещества и возвращает неиспользованные. При этом:

одни организмы потребляют минеральные вещества непосредственно из окружающей среды;

другие используют продукты, переработанные и выделенные первыми;

третьи – вторыми и т.д., пока вещества не возвратятся в окружающую среду в первоначальном состоянии.

В биосфере очевидна необходимость сосуществования различных организмов, способных использовать продукты жизнедеятельности друг друга. Мы видим практически безотходное биологическое производство.

Круговорот веществ в живых организмах условно можно свести к четырём процессам:

1.Фотосинтез. В результате фотосинтеза растения усваивают и аккумулируют солнечную энергию и синтезируют из неорганических веществ органические вещества - первичную биологическую продукцию - и кислород. Первичная биологическая продукция отличается большим разнообразием – содержит углеводы (глюкозу), крахмал, клетчатку, белки, жиры.

Схема фотосинтеза простейшего углевода (глюкозы) имеет следующую схему:

Этот процесс протекает только днём и сопровождается увеличением массы растений.

На Земле ежегодно в результате фотосинтеза образуется около 100 млрд. т. органического вещества, усваивается около 200 млрд. т. углекислого газа, выделяется примерно 145 млрд. т кислорода.

Фотосинтезу принадлежит решающая роль в обеспечении существования жизни на Земле. Его глобальное значение объясняется тем, что фотосинтез является единственным процессом, в ходе которого энергия в термодинамическом процессе согласно с минималистским принципом не рассеивается, а наоборот – накапливается.

Синтезируя необходимые для построения белков аминокислоты, растения могут существовать относительно независимо от других живых организмов. В этом проявляется автотрофность растений (самостоятельность в питании). В то же время зелёная масса растений и кислород, образующийся в процессе фотосинтеза, являются основой для поддержания жизни следующей группы живых организмов – животных, микроорганизмов. В этом проявляется гетеротрофность этой группы организмов.

2. Дыхание. Процесс обратный фотосинтезу. Происходит во всех живых клетках. При дыхании органическое вещество окисляется кислородом, в результате образуется углекислый газ, вода и выделяется энергия.

3. Пищевые (трофические) связи между автотрофными и гетеротрофными организмами. В данном случае происходит перенос энергии и вещества по звеньям пищевой цепи, которые более подробно были нами рассмотрены ранее.

4. Процесс транспирации. Один из самых важных процессов в биологическом круговороте.

Схематично его можно описать следующим образом. Растения поглощают почвенную влагу корнями. При этом в них поступают растворённые в воде минеральные вещества, которые усваиваются, а влага более или менее интенсивно испаряется в зависимости от условий среды.

4.4.5. Биогеохимические циклы

Геологический и биологический круговороты связаны – они существуют как единый процесс, рождая циркуляцию веществ, так называемые биогеохимические циклы (БГХЦ). Этот круговорот элементов обусловлен синтезом и распадом органических веществ в экосистеме (рис.4.1) В БГХЦ задействованы не все элементы биосферы, а только биогенные. Из них состоят живые организмы, эти элементы вступают в многочисленные реакции и участвуют в процессах, протекающих в живых организмах. В процентном соотношении совокупная масса живого вещества биосферы состоит из следующих основных биогенных элементов: кислорода – 70%, углерода – 18%, водорода – 10,5%, кальция – 0,5%, калия – 0,3%, азот – 0,3%, (кислород, водород, азот, углерод присутствуют во всех ландшафтах и являются основой живых организмов – 98%).

Сущность биогенной миграции химических элементов.

Таким образом, в биосфере имеют место биогенный круговорот веществ (т.е. круговорот, вызванный жизнедеятельностью организмов) и однонаправленный поток энергии. Биогенная миграция химических элементов определяется в основном двумя противоположными процессами:

1. Образование живого вещества из элементов окружающей среды за счет солнечной энергии.

2. Разрушение органических веществ, сопровождающееся выделением энергии. При этом элементы минеральных веществ многократно попадают в живые организмы, входя тем самым в состав сложных органических соединений, форм, а затем при разрушении последних снова приобретают минеральную форму.

Существуют элементы, входящие в состав живых организмов, но не относящиеся к биогенным. Такие элементы классифицируются по их весовой доле в организмах:

Макроэлементы – составляющие не менее 10-2% массы;

Микроэлементы – составляющие от 9*10-3 до 1*10-3% массы;

Ультрамикроэлементы – менее 9*10-6% массы;

Чтобы определить место биогенных элементов среди других химических элементов биосферы, рассмотрим принятую в экологии классификацию. По проявляемой активности в процессах, протекающих в биосфере, все химические элементы делят на 6 групп:

Благородные газы – гелий, неон, аргон, криптон, ксенон. Инертные газы в состав живых организмов не входят.

Благородные металлы – рутений, радий, палладий, осмий, иридий, платина, золото. Эти металлы почти не создают соединений в земной коре.

Циклические или биогенные элементы (их ещё называют миграционными). На эту группу биогенных элементов в земной коре приходится 99,7% всей массы, а на остальные 5 групп – 0,3%. Таким образом, основная масса элементов – это мигранты, которые осуществляют кругооборот в географической оболочке, а часть инертных элементов очень мала.

Рассеянные элементы, характеризующиеся преобладанием свободных атомов. Вступают в химические реакции, но их соединения редко встречаются в земной коре. Разделяются на две подгруппы. Первая – рубидий, цезий, ниобий, тантал – создают соединения в глубинах земной коры, а на поверхности их минералы разрушаются. Вторая – йод, бром – вступают в реакции лишь на поверхности.

Радиоактивные элементы – полоний, радон, радий, уран, нептуний, плутоний.

Редкоземельные элементы – иттрий, самарий, европий, тулий т.д.

Круглогодично биохимические циклы приводят в движение около 480 млрд. т. вещества.

В.И. Вернадский сформулировал три биогеохимических принципа, которые объясняют сущность биогенной миграции химических элементов:

Биогенная миграция химических элементов в биосфере всегда стремится к максимальному своему проявлению.

Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых форм жизни, идёт в направлении, усиливающем биогенную миграцию атомов.

Живое вещество находится в непрерывном химическом обмене с окружающей его средой, что является фактором, воссоздающим и поддерживающим биосферу.

Рассмотрим, как движутся в биосфере некоторые из этих элементов.

Круговорот углерода. Главным участником биотического круговорота является углерод как основа органических веществ. Преимущественно круговорот углерода происходит между живым веществом и углекислым газом атмосферы в процессе фотосинтеза. С пищей его получают травоядные, от травоядных – хищники. При дыхании, гниении углекислый газ частично возвращается в атмосферу, возврат происходит при сжигании органических полезных ископаемых.

При отсутствии возврата углерода в атмосферу, он был бы израсходован зелёными растениями за 7-8 лет. Скорость биологического оборота углерода через фотосинтез – 300 лет. Мировой океан играет большую роль в регулировании содержания СО2 в атмосфере. Если в атмосфере повышается содержание СО2, часть его растворяется в воде, вступая в реакцию с карбонатом кальция.

Круговорот кислорода.

Кислород обладает высокой химической активностью, вступает в соединения практически со всеми элементами земной коры. Встречается в основном в виде соединений. Каждый четвёртый атом живого вещества – атом кислорода. Почти весь молекулярный кислород в атмосфере возник и поддерживается на постоянном уровне благодаря деятельности зелёных растений. Кислород атмосферы, связываясь при дыхании и освобождаясь при фотосинтезе, проходит через все живые организмы за 200 лет.

Круговорот азота. Азот является составной частью всех белков. Общее отношение связанного азота, как элемента, составляющего органическое вещество, к азоту в природе равно 1:100000. Энергия химической связи в молекуле азота очень велика. Поэтому соединение азота с другими элементами – кислородом, водородом (процесс азотофиксации) – требует больших затрат энергии. Промышленная фиксация азота идёт в присутствии катализаторов при температуре -500оС и давлении –300 атм.

Как известно, атмосфера содержит более 78% молекулярного азота, но в таком состоянии он не доступен зелёным растениям. Для своего питания растения могут использовать лишь соли азотной и азотистой кислот. Каковы пути образования этих солей? Вот некоторые из них:

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальной температуре и давлении благодаря высокой эффективности биокатализа. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд. т азота в год (мировой объём промышленной фиксации – около 90 млн.т).

Почвенные азотофиксирующие бактерии способны усваивать молекулярный азот из воздуха. Они обогащают почву азотистыми соединениями, поэтому их значение чрезвычайно велико.

В результате разложения азотосодержащих соединений органических веществ растительного и животного происхождения.

Под действием бактерий азот переходит в нитраты, нитриты, аммонийные соединения. В растениях соединения азота принимают участие в синтезе белковых соединений, которые в цепях питания передаются от организма к организму.

Круговорот фосфора. Ещё одним важным элементом, без которого невозможен синтез белков, является фосфор. Основные источники – изверженные породы (апатиты) и осадочные породы (фосфориты).

Неорганический фосфор вовлекается в круговорот в результате естественных процессов выщелачивания. Фосфор усваивается живыми организмами, которые при его участии синтезируют ряд органических соединений и передают на различные трофические уровни.

Закончив свой путь по трофическим цепям, органические фосфаты разлагаются микробами и превращаются в минеральные фосфаты, доступные для зелёных растений.

В процессе биологического круговорота, который обеспечивает движение вещества и энергии, нет места накоплению отходов. Продукты жизнедеятельности (т.е. отходы) каждой формы жизни являются питательной средой для других организмов.

Теоретически в биосфере всегда должен поддерживаться баланс между продуцированием биомассы и её разложением. Однако в отдельные геологические периоды сбалансированность биологического круговорота нарушалась, когда из-за определённых природных условий, катаклизмов не вся биологическая продукция усваивалась, трансформировалась. В этих случаях образовывались излишки биологической продукции, которые консервировались и откладывались в земной коре, под толщей воды, наносов, оказывались в зоне вечной мерзлоты. Так сформировались залежи каменного угля, нефти, газа, известняка. Надо отметить, что они не засоряют биосферу. В органических полезных ископаемых сконцентрировалась энергия Солнца, накопленная в процессе фотосинтеза. Сейчас, сжигая органические горючие полезные ископаемые, человек высвобождает эту энергию.

В данной работе предлагаем вам рассмотреть, что такое круговорот биологический. Каковы его функции и значение для нашей планеты. Также мы уделим внимание вопросу источника энергии для его осуществления.

Что еще нужно знать перед тем, как рассмотрим круговорот биологический, это то, что наша планета состоит из трех оболочек:

  • литосфера (твердая оболочка, грубо говоря, это земля, по которой мы ходим);
  • гидросфера (куда можно отнести всю воду, то есть моря, реки, океаны и так далее);
  • атмосфера (газообразная оболочка, воздух, которым мы дышим).

Между всеми слоями есть четкие границы, но они без какого-либо труда способны проникать друг в друга.

Круговорот веществ

Все эти слои составляют биосферу. Что такое круговорот биологический? Это когда вещества перемещаются по всей биосфере, а именно в почве, воздухе, в живых организмах. Это бесконечная циркуляция и называется биологическим круговоротом. Важно знать и то, что все начинается и заканчивается в растениях.

Под скрывается неимоверно сложный процесс. Какие-либо вещества из почвы и атмосферы попадают в растения, затем в другие живые организмы. Тогда в телах, которые их поглотили, начинают активно вырабатывать другие сложные соединения, после чего последние выбираются наружу. Можно сказать, что это процесс, в котором выражается взаимосвязь всего на нашей планете. Организмы взаимодействуют между собой, только так мы и существуем по сей день.

Атмосфера не всегда была такой, какой мы ее знаем. Ранее наша воздушная оболочка очень сильно отличалась от нынешней, а именно была насыщена углекислым газом и аммиаком. Как же тогда появились люди, которые для дыхания используют кислород? Нам стоит поблагодарить зеленые растения, которые смогли привести состояние нашей атмосферы в нужный для человека вид. Воздух и растения поглощаются травоядными животными, они же входят в меню хищников. Когда животные умирают, то их остатки перерабатывают микроорганизмы. Именно так получается гумус, необходимый для роста растений. Как видите, круг замкнулся.

Источник энергии

Круговорот биологический невозможен без энергии. Что или кто является источником энергии для организации этого взаимообмена? Конечно, наш источник тепловой энергии звезда Солнце. Биологический круговорот просто невозможен без нашего источника тепла и света. Солнце нагревает:

  • воздух;
  • почву;
  • растительность.

Во время нагрева происходит испарение воды, которая начинает скапливаться в атмосфере в виде облаков. Вся вода в итоге вернется на поверхность Земли в виде дождя или снега. После ее возвращения она пропитывает почву, и ее всасывают корни различных деревьев. Если вода успела проникнуть очень глубоко, то она пополняет запасы грунтовых вод, а некоторая часть и вовсе возвращается в реки, озера, моря и океаны.

Как известно, при дыхании мы поглощаем кислород, а выдыхаем углекислый газ. Так вот, солнечная энергия нужна деревьям и для того, чтобы переработать углекислый газ и вернуть в атмосферу кислород. Этот процесс имеет название фотосинтез.

Циклы биологического круговорота

Начнем этот раздел с понятия «биологический процесс». Он представляет собой повторяющееся явление. Мы можем наблюдать которые и состоят из биологических процессов, постоянно повторяющихся с определенными промежутками.

Биологический процесс можно увидеть везде, он присущ всем организмам, живущим на планете Земля. Также он является частью всех уровней организации. То есть и внутри клетки, и в биосфере мы можем эти процессы наблюдать. Мы можем выделить несколько видов (циклов) биологических процессов:

  • внутрисуточные;
  • суточные;
  • сезонные;
  • годичные;
  • многолетние;
  • многовековые.

Наиболее ярко выражены годичные циклы. Мы их наблюдаем всегда и везде, стоит только немного над этим вопросом задуматься.

Вода

Сейчас предлагаем вам рассмотреть биологический круговорот в природе на примере воды, самого распространенного соединения нашей планеты. Она обладает многими возможностями, что позволяет ей участвовать во многих процессах как внутри организма, так и за его пределами. От круговорота Н 2 О в природе зависит жизнь всего живого. Без воды нас бы не было, а планета была бы похожа на безжизненную пустыню. Она способна участвовать во всех жизненно важных процессах. То есть можно сделать такой вывод: всем живым существам планеты Земля просто необходима чистая вода.

Но вода всегда в результате каких-либо процессов загрязняется. Как же тогда обеспечить себя неиссякаемым запасом чистой питьевой воды? Об этом побеспокоилась природа, нам стоит поблагодарить за это существование того самого круговорота воды в природе. Мы уже ранее рассмотрели, как это все происходит. Вода испаряется, собирается в облака и выпадает осадками (дождь или снег). Этот процесс принято называть «гидрологический цикл». Он основан на четырех процессах:

  • испарение;
  • конденсация;
  • выпадение осадков;
  • сток вод.

Можно выделить два вида круговорота воды: большой и малый.

Углерод

Теперь мы рассмотрим, как происходит биологический в природе. Важно знать и то, что он по процентному содержанию веществ занимает лишь 16-е место. Может встречаться в виде алмазов и графита. А процентное содержание его в каменном угле превышает девяносто процентов. Углерод даже входит в состав атмосферы, но его содержание очень мало, примерно 0,05 процента.

В биосфере благодаря углероду создается просто масса различных органических соединений, нужных всему живому на нашей планете. Рассмотрим процесс фотосинтеза: растения поглощают углекислоту из атмосферы и перерабатывают ее, в результате мы имеем разнообразные органические соединения.

Фосфор

Значение биологического круговорота достаточно велико. Даже если мы возьмем фосфор, то он содержится в большом количестве в костях, необходим для растений. Главный источник - это апатит. Его можно встретить в магматической породе. Живые организмы способны его доставать из:

  • почвы;
  • водных ресурсов.

Он содержится и в организме человека, а именно входит в состав:

  • белков;
  • нуклеиновой кислоты;
  • костной ткани;
  • лецитинов;
  • фитинов и так далее.

Именно фосфор необходим для накопления энергии в организме. Когда организм гибнет, то он возвращается в почву или в море. Это способствует образованию пород, богатых фосфором. Это имеет большое значение в биогенном цикле.

Азот

Сейчас мы рассмотрим круговорот азота. Перед этим мы отметим то, что он составляет порядка 80 % всего объема атмосферы. Согласитесь, эта цифра довольно внушительна. Кроме того что он является основой состава атмосферы, азот встречается в растительных и животных организмах. Мы его можем встретить в форме белков.

Что же касается круговорот азота, то можно сказать так: из атмосферного азота образуются нитраты, которые синтезируются растениями. Процесс создания нитратов принято называть фиксацией азота. Когда растение умирает и гниет, то азот, содержащийся в нем, попадает в почву в виде аммиака. Последний перерабатывается (окисляется) организмами, живущими в почвах, так появляется азотная кислота. Она способна вступить в реакцию с карбонатами, которыми насыщена почва. Кроме этого, нужно упомянуть и то, что азот выделяется и в чистом виде в результате гниения растений или в процессе горения.

Сера

Как и многие другие элементы, очень тесно связан с живыми организмами. Сера попадает в атмосферу в результате извержения вулканов. Сульфидную серу могут перерабатывать микроорганизмы, так на свет появляются сульфаты. Последние поглощаются растениями, сера входит в состав эфирных масел. Что касается организма, то серу мы можем встретить в:

  • аминокислотах;
  • белках.

БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ Поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с посмертными остатками и повторное поступление в живые организмы после процессов деструкции и минерализации с помощью микроорганизмов

Словарь бизнес-терминов. Академик.ру . 2001 .

Смотреть что такое "БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ" в других словарях:

    БИОЛОГИЧЕСКИЙ КРУГОВОРОТ ВЕЩЕСТВ, или малый К.в. поступление веществ из почвы и атмосферы в живые организмы с соответствующим изменением их химической формы, возвращение их в почву и атмосферу в процессе жизнедеятельности организмов и с… … Экологический словарь

    Круговорот веществ малый, возникший одновременно с появлением жизни на Земле круговорот химических элементов и веществ, осуществляемый жизнедеятельностью организмов. Основную роль в биологическом круговороте играют первичные продуценты (зеленые… … Экологический словарь

    В природе, относительно повторяющиеся взаимосвязанные физические, химические и биологические процессы превращения и перемещения вещества в природе. До создания В. И. Вернадским биогеохимии и учения о биосфере в науке бытовало представление о… … Биологический энциклопедический словарь

    Многократно повторяющееся участие веществ в природных, процессах, протекающих в океане. Наиболее значителен биологический: повторное использование морскими организмами биогенных хим. компонентов (С, N, P, SiO2, CaCO3, a также Fe, Mn и др.),… … Геологическая энциклопедия

    Повторяющийся циклический процесс превращения и перемещения отдельных химических элементов и их соединений. Происходил в течение всей истории развития Земли и продолжается в настоящее время. Всегда имеет место определённое отклонение в составе и… … Географическая энциклопедия

    Круговорот веществ биологический - (биотический), биотический круговорот явление непрерывного относительно циклического, но неравномерного во времени и пространстве и сопровождающегося более или менее значительными потерями, закономерного перераспределения веществ, энергии и… … Концепции современного естествознания. Словарь основных терминов

    Схематическое представление прохождения азота через биосферу. Ключевым элементом цикла являются разные виды бактерий (англ.) Круговорот азота био … Википедия

    Циклические процессы перемещения и трансформации химических элементов в пределах биосферы, происходящие между ее (био)хорологическими подразделениями: биогеоценозами, ландшафтами и т.п. Ср. Биологический круговорот веществ и Геологический… … Экологический словарь

    См. Биологический круговорот веществ. Экологический словарь, 2001 … Экологический словарь

    Общая площадь планеты Земля составляет 510 млн. км2. На долю суши приходится 149 млн. км2, Мировой океан занимает 361 млн. км2. И суша и океан заселены растениями и животными. Разнообразие и тех и других очень велико. Ныне установлено… … Биологическая энциклопедия

Круговороты веществ

Малые миграционные потоки химических элементов как между взаимосвязанными организмами, так и между организ­мами и окружающей их средой складываются в более крупные циклы - круговороты . Продолжительность и постоянство су­ществования жизни поддерживают именно круговороты, пото­му что без них даже в масштабах всей Земли запасы необходи­мых элементов были бы очень скоро исчерпаны.

Круговорот биологический (биотический) - явление не­прерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энер­гии 1 и информации в пределах экологических систем различного иерархического уровня организации - от биогеоценоза до био­сферы. Круговорот веществ в масштабах всей биосферы назы­вают большим кругом, а в пределах конкретного био­геоценоза - малым кругом биотического обмена. Часть биологического круговорота, состоящая из кругово­ротов углерода, воды, азота, фосфора, серы и других биоген­ных веществ, называют биогеохимическим круговоротом.

Некоторое количество вещества может на время выбы­вать из биологического круговорота (осаждаться на дне океа­нов, морей, выпадать в глубины земной коры и т. п.). Однако в результате протекания тектонических и геологических про­цессов (вулканической деятельности, подъема и опускания земной коры, изменения границ между сушей и водой и др.) осадочные породы вновь включаются в круговорот, назы­ваемый геологическим циклом или кругово­ротом.

Круговороты веществ от продуцентов к консументам раз­личных уровней, затем к редуцентам, а от них вновь к проду­центам замкнуты не полностью. Если бы в экосистемах су­ществовала их полная замкнутость, то не возникало бы ника­ких изменений среды жизни, не было бы почвы, известняков и прочих горных пород биогенного происхождения. Таким обра­зом, биотический круговорот можно условно изобразить в виде незамкнутого кольца. Потери вещества из-за незамкнутости круговорота мини­мальны в биосфере (самой крупной экосистеме планеты). Ин­формация в экосистемах теряется с гибелью видов и необрати­мыми генетическими перестройками.

Таким образом, каждая экосистема поддерживает свое су­ществование за счет круговорота биогенов и постоянного прито­ка солнечной энергии. Круговорот энергии в экосистемах прак­тически отсутствует, поскольку от редуцентов она (энергия) воз­вращается к консументам в мизерных количествах. Считают, что коэффициент круговорота энергии не превышает 0,24%. Энергия может накапливаться, сберегаться (т. е. преобразовы­ваться в более эффективные формы) и передаваться из одной части системы в другую, но она не может быть снова пущена в дело, как вода и минеральные вещества. Единожды пройдя от растений-продуцентов через консументы к редуцентам, энергия выносится в околоземное и космическое пространство. При дви­жении через экосистему поток энергии затрагивает в основном ее биоценоз, поэтому он подробно рассмотрен ранее.

Биологический круговорот веществ - последовательная, беспрерывная циркуляция химических элементов, которая происходит за счет солнечного излучения и поддерживается совокупностью организмов, объединенных посредством цепей питания.

(по біологічному довіднику за ред.І.Г.Підоплічко К.М., Ситника, 1974).

Биологический круговорот веществ состоит из процессов образования органических веществ из элементов, которые содержатся в воздухе, почвах, воде и последующего разложения этих веществ, в результате которого элементы переходят в минеральную форму.

Биологический круговорот веществ обеспечивает необходимые элементы внешней и внутренней среды живых организмов и поддерживает ее устойчивость. Это, прежде всего, круговорот углерода, кислорода азота, фосфора и т.д.

Круговорот веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в т.ч. в тех их слоях, которые входят в биосферу планеты. Особое значение имеет круговорот биофильных элементов - азота, фосфора серы. (по Реймерсу Н.Ф.Д., 1990).

Круговорот биологический - явление непрерывного, циклического, но неравномерного во времени и пространстве и сопровождающегося более или менее значительными потерями закономерного перераспределения вещества, энергии и информации в пределах экосистем различного иерархического уровня организации от биогеоценоза до биосферы (Н.Ф.Реймерс, 1990). Полного круговорота веществ в пределах биогеоценоза не происходит т.к. часть веществ всегда уходит за его пределы.

Круг биотического обмена большой (биосферный) - безостановочный, планетарный процесс закономерного циклического неравномерного во времени и пространстве перераспределения вещества, энергии, информации многократно входящих (кроме однонаправленного потока энергии) в непрерывно обновляющееся экологические системы биосферы (Реймерс Н.Ф., 1990).

И здесь главный параметр - коэффициент экологической эффективности. Отношение биомассы организмов к количеству потребляемого ими органического вещества иногда называют коэффициентом экологической эффективности. Этот коэффициент, как правило, не превосходит 10-20.

Интенсивность процессов обмена (метаболизм) на единицу веса живого организма обычно тем больше, чем меньше этот организм. Причина этой закономерности - существенная зависимость процесса обмена от скорости диффузии газов через поверхность организмов, которая увеличивается на единицу их биомассы по мере уменьшения размера.

Общая величина биомассы для Земли по оценкам В.А.Ковды (1969) = 3.10 (12), причем свыше 95% этой величины относится к растениям и 5% к животным. Из всего этого основная масса приходится на леса континентов.

Считая, что суммарная продуктивность растений на континентах составляет 140.10 (9) тонн, заключим, что время одного цикла кругооборота органического вещества на континентах составляет около 20 лет.(вероятно это относится к лесам) для других этот цикл короче, еще меньше для океанов - для фитопланктона несколько дней). Продолжительность одного цикла кругооборота оргвещества животных составляет несколько лет (общая биомасса животных равна около 10(11) тонн и они осваивают 10% от итоговой продуктивности растений - отсюда этот расчет). Согласно данных Хаксли (Нихley,1962) в африканских саваннах биомасса крупных диких животных может достигать 15-25 т./км.кв., в лесах умеренных широт - 1 т/км.кв., в тундре - 0,8 т/км.кв, в полупустыне - 0,35т /км.кв.

Оценка биологической массы людей и расчет потребляемой энергии в ходе их питания рассчитывается точнее.

Сейчас (при более 4 млрд.чел, биомасса людей составляет около 0,2.10^19 тонн. (а сейчас уже более 5 млрд.). Человек ежедневно потребляет 2,5.10^3 ккал энергии, тогда суммарное потребление энергии людьми составляет 1,8.10^15ккал/год. Эта величина приблизительно соответствует современной продуктивности с/х производства! т.е. в современную эпоху человек потребляет около 0,2% первичной продукции органического мира. Несколько тысяч лет назад эта цифра была значительно ниже 0,01%, а еще будет расти.

Потребляя продукцию человек расходует техническую энергию, этого нового источника тепла нашей планеты.

Поскольку в основе процесса создания органического вещества лежит поглощение автотрофными растениями углекислого газа, часто называемого углекислотой, из атмосферы и гидросферы, то его в первую очередь необходимо анализировать в глобальном биологическом круговороте. Его в атмосфере около 2,3.10^12, т.е. 0,032% всего атмосферного воздуха (объемные %). В гидросфере его больше 130.10^12 тонн. Он мало изменяется в различных географических районах и с высотой. Причина - независимость содержания углекислоты от температуры. Главные компоненты круговорота углекислоты определяются биологическими процессами, и немного - геологическими. Расход на фотосинтез за год 3.10^17 (это карбонатные). Среднее время возобновления углекислоты в атмосфере составляло около 10 лет.

А теперь перейдем к рассмотрению отдельных круговоротов в биосфере. Основной движущей силой круговоротов веществ на планете является живое вещество. Именно живое вещество, точнее его деятельность через систему круговоротов обеспечивает поступательное развитие биосферы Земли. В основе круговорота вещества и энергии лежат два противоположных процесса - созидание и разрушение. Первый обеспечивает образование живого вещества и аккумуляцию энергии, второй - разрушение сложных органических соединений и превращение их в простые минеральные: углекислый газ, воду, различные соли и т.д. Биосфера существует за счет (благодаря) непрерывному круговороту. Ранее мы уже отмечали, что энергетической основой существования биологических круговоротов является процесс фотосинтеза. В ходе этого процесса (именно он в энергетическом отношении представляет восходящую ветвь биологического круговорота) запасается огромное количество энергии (солнечной) преобразованной в потенциальную химическую энергию (химическую) органических веществ. Нисходящая ветвь (в энергетическом отношении) - это все остальные жизненные процессы, в которых происходят превращения созданных при фотосинтезе биологических соединений и использование запасенной энергии. Завершаются эти процессы окислением и минерализацией органических веществ, деградацией и превращением в тепло энергии, запасенной в химических связях этих веществ.


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча