21.09.2019

Тепловое расширение твердых тел и жидкостей. Тепловое расширение тел


Нам известно, что все вещества состоят из частиц (атомов, молекул). Эти частицы непрерывно хаотически движутся. При нагревании вещества движение его частиц становится более быстрым. При этом увеличиваются расстояния между частицами, что приводит к увеличению размеров тела.

Изменение размеров тела при его нагревании называется тепловым расширением .

Тепловое расширение твердых тел легко подтвердить опытом. Стальной шарик, свободно проходящий через кольцо, после нагревания на спиртовке расширяется и застревает в кольце. После охлаждения шарик вновь свободно проходит через кольцо. Из опыта следует, что размеры твердого тела при нагревании увеличиваются, а при охлаждении - уменьшаются.

Тепловое расширение различных твердых тел неодинаково.

При тепловом расширении твердых тел появляются огромные силы, которые могут разрушать мосты, изгибать железнодорожные рельсы, разрывать провода. Чтобы этого не случилось, при конструировании того или иного сооружения учитывается фактор теплового расширения. Провода линий электропередачи провисают, чтобы зимой, сокращаясь, они не разорвались.

Рельсы на стыках имеют зазор. Несущие детали мостов ставят на катки, способные передвигаться при изменениях длины моста зимой и летом.

А расширяются ли при нагревании жидкости? Тепловое расширение жидкостей тоже можно подтвердить на опыте. В одинаковые колбы нальем: в одну - воду, а в другую - такой же объем спирта. Колбы закроем пробками с трубками. Начальные уровни воды и спирта в трубках отметим резиновыми кольцами. Поставим колбы в емкость с горячей водой. Уровень воды в трубках станет выше. Вода и спирт при нагревании расширяются. Но уровень в трубке колбы со спиртом выше. Значит, спирт расширяется больше. Следовательно, тепловое расширение разных жидкостей, как и твердых веществ, неодинаково .

А испытывают ли тепловое расширение газы? Ответим на вопpoс с помощью опыта. Закроем колбу с воздухом пробкой с изогнутой трубкой. В трубке находится капля жидкости. Достаточно приблизить руки к колбе, как капля начинает перемещаться вправо. Это подтверждает тепловое расширение воздуха при его даже незначительном нагревании. Причем, что очень важно, все газы, в отличие от твердых веществ и жидкостей, при нагревании расширяются одинаково .

Нельзя после горячего чая сразу пить холодную воду. Резкое изменение температуры часто приводит к порче зубов. Это объясняется тем, что основное вещество зуба - дентин - и покрывающая зуб эмаль при одном и том же изменении температуры расширяются неодинаково.

При равномерном нагревании однородного тела оно не разрушается, но неравномерный нагрев может вызвать значительные механические напряжения (внутренние нагрузки). Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. Почему? В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части этого же сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части быстро и почти одномоментно прогреваются.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково (вещества имеют аналогичные коэффициенты). Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон – затвердевший бетонный раствор, залитый в стальную решётку. Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.

Ещё несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава железа и никеля, имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковые коэффициенты линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнородные пластины (например, железная и медная), сваренные или «склёпанные» вместе, образуют так называемую биметаллическую пластину. При нагревании такие пластины изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны.

Это свойство биметаллических пластин широко используется для измерения температуры и её регулирования. Металлический термометр имеет спираль, сделанную из двух полос различных металлов, сваренных (или склёпанных) друг с другом. Один из этих металлов расширяется при нагревании сильнее, чем другой. Вследствие одностороннего расширения спираль развёртывается, и указатель смещается по шкале вправо. При охлаждении спираль снова скручивается и указатель отходит по шкале влево.


(C) 2012. Савинкова Галина Львовна (г. Самара)

Почему при нагревании большинство твёрдых тел расширяются? Это происходит из-за того, что при увеличении температуры увеличивается кинетическая энергия движения частиц, которые находятся в узлах кристаллической решётки. Увеличение кинетической энергии, в свою очередь, приводит к увеличению амплитуды колебаний этих частиц около положения равновесия. В результате увеличения амплитуды колебаний увеличивается среднее расстояние между частицами в кристаллической решётке, что приводит к увеличению линейных размеров всего тела.

Слайд 12 из презентации «Деформация тела» к урокам физики на тему «Сила упругости»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке физики, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Деформация тела.pptx» можно в zip-архиве размером 3081 КБ.

Скачать презентацию

Сила упругости

«Законы механики» - Механическое колебательное движение. Правило моментов. Эксперимент по измерению моментов сил. При накручивании нити на стержень маятник способен совершать колебания. Физика изучает законы природы. Установка «Физический маятник». Масса. Инертность тела. Невесомость. Характеризует вращательное действие силы на твёрдое тело.

«Механическая энергия» - Рассмотрим взаимосвязь энергии и работы. Так как. Потенциальная энергия. Урок №2. h. Урок №1. S. Определим кинетическую энергию тела, движущегося со скоростью?.

«Сила упругости закон Гука» - Сила упругости. Сила упругости возникает при деформации тел. Экспериментальное задание. Подготовила учитель физики Кузьмичёва И. А МОУ – СОШ с. Софьино. Упругие деформации. Fупр = k · x где х – смещение, k – коэффициент пропорциональности, или коэффициент жёсткости. Кручение. Сформулировать закон Гука.

«Закон Гука» - dy. После деформации размеры кубика равны: С*. Рассмотрим деформацию параллелепипеда. Используем обобщенный закон Гука: Рассмотрим изменение объема единичного кубика: 1. В*. Объемный закон Гука. При воздействии?x: 2. Обобщенный закон Гука. 2. Объемный закон Гука. ?V = 1/E[?x + ?y + ?z -n(?y + ?z + ?x + ?z + ?x + ?y)] = (1 – 2n)/E (?x + ?y + ?z).

«Сохранение энергии» - Установить направляющую рейку под углом? =30° к поверхности стола. Оборудование урока. Рассчитать значение конечной скорости и кинетическую энергию тела. Найти высоту h положения тела над нулевым уровнем. Вопросы к повторению материала по теме «Закон сохранения энергии». Поднимите рукой груз, разгружая пружину, и установите фиксатор внизу у скобы.

Тема2.1.6 Линейное и объемное расширение твердых тел при нагревании.

1. Тепловое расширение.

2. Линейное расширение.

3. Объемное расширение.

4. Тепловое расширение жидкостей.

Литература: Дмитрієва В.Ф. Фізика: Навчальний посібник для студентів навчальних закладів І-ІІ рівнів акредитації. – К: Техніка, 2008. – 648 с. (§81)

1. Тепловым расширением называется увеличение линейных размеров тела и его объема, которое происходит с повышением температуры.

В процессе нагревания твердого тела увеличиваются средние расстояния между атомами.

2. Величина, равная отношению относительного удлинения тела к изменению его температуры на ∆Т = Т – Т 0 , называется температурным коэффициентом расширения:

Из этой формулы определяем зависимость длины твердого тела от температуры:

l = l 0 (1+α∆Т)

3. С возрастанием температуры изменяется и объем тела. В пределах не очень большого температурного интервала объем увеличивается пропорционально температуре. Объемное расширение твердых тел характеризуется температурным коэффициентом объемного расширения β – величиной, равной отношению относительного увеличения объема ∆V/V 0 тела к изменению температуры ∆Т:

; V = V 0 (1+ β∆Т).

4. В процессе нагревания жидкости возрастает средняя кинетическая энергия хаотичного движения ее молекул. Это ведет к увеличению расстояния между молекулами, а значит, и к увеличению объема. Тепловое расширение жидкостей, как и твердых тел, характеризуется температурным коэффициентом объемного расширения. Объем жидкости при нагревании определяют по формуле: V = V 0 (1+ β∆Т). Если объем тел увеличивается, то уменьшается их плотность: ρ = ρ 0 /(β∆Т)

Объем большинства тел в процессе плавления увеличивается, а в процессе затвердевания уменьшается, при этом изменяется и плотность вещества.

Плотность вещества при плавлении уменьшается, а при затвердевании увеличивается. Но есть такие вещества, как, например, кремний, германий, висмут, плотность которых при плавлении увеличивается, а при затвердевании уменьшается. К таким веществам принадлежит и лед (вода) .

Контрольные вопросы и задачи

1 Когда происходит тепловое расширение тел?

2 Что называется температурным коэффициентом расширения?

3 Чем характеризуется объемное расширение твердых тел?

4 Чем характеризуется тепловое расширение жидкостей?

5 Почему при нагревании и охлаждении железобетонных конструкций железо в них не отделяется от бетона?

Тепловое расширение — изменение линейных размеров и формы тела при изменении его температуры. Для характеристики теплового расширения твёрдых тел вводят коэффициент линейного теплового расширения.

Механизм теплового расширения твердых тел можно представить следующим образом. Если к твердому телу подвести тепловую энергию, то благодаря колебанию атомов в решетке происходит процесс поглощения им теплоты. При этом колебания атомов становятся более интенсивными, т.е. увеличиваются их амплитуда и частота. С увеличением расстояния между атомами увеличивается и потенциальная энергия, которая характеризуется межатомным потенциалом.

Последний выражается суммой потенциалов сил отталкивания и притяжения. Силы отталкивания между атомами с изменением межатомного расстояния меняются быстрее, чем силы притяжения; в результате форма кривой минимума энергии оказывается несимметричной, и равновесное межатомное расстояние увеличивается. Это явление и соответствует тепловому расширению.

Зависимость потенциальной энергии взаимодействия молекул от расстояния между ними позволяет выяснить причину возникновения теплового расширения. Как видно из рисунка 9.2, кривая потенциальной энергии сильно несимметрична. Она очень быстро (круто) возрастает от минимального значения Е р0 (в точке r 0) при уменьшении r и сравнительно медленно растет при увеличении r .

Рисунок 2.5

При абсолютном нуле в состоянии равновесия молекулы находились бы друг от друга на расстоянии r 0 , соответствующем минимальному значению потенциальной энергии Е р0 . По мере нагревания молекулы начинают совершать колебания около положения равновесия. Размах колебаний определяется средним значением энергии Е. Если бы потенциальная кривая была симметричной, то среднее положение молекулы по-прежнему соответствовало бы расстоянию r 0 . Это означало бы общую неизменность средних расстояний между молекулами при нагревании и, следовательно, отсутствие теплового расширения. На самом деле кривая несимметрична. Поэтому при средней энергии, равной , среднее положение колеблющейся молекулы соответствует расстоянию r 1 > r 0 .

Изменение среднего расстояния между двумя соседними молекулами означает изменение расстояния между всеми молекулами тела. Поэтому размеры тела увеличиваются. Дальнейшее нагревание тела приводит к увеличению средней энергии молекулы до некоторого значения , и т. д. При этом увеличивается и среднее расстояние между молекулами, так как теперь колебания совершаются с большей амплитудой вокруг нового положения равновесия: r 2 > r 1 , r 3 > r 2 и т. д.

Применительно к твердым телам, форма которых при изменении температуры (при равномерном нагревании или охлаждении) не меняется, различают изменение линейных размеров (длины, диаметра и т. п.) — линейное расширение и изменение объема — объемное расширение. У жидкостей при нагревании форма может меняться (например, в термометре ртуть входит в капилляр). Поэтому в случае жидкостей имеет смысл говорить только об объемном расширении.


Основной закон теплового расширения твердых тел гласит, что тело с линейным размером L 0 при увеличении его температуры на ΔT расширяется на величину ΔL , равную:

ΔL = αL 0 ΔT, (2.28)

где α — так называемый коэффициент линейного теплового расширения .

Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Коэффициент линейного расширения зависит от природы вещества, а также от температуры. Однако, если рассматривать изменения температуры в не слишком широких пределах, зависимостью α от температуры можно пренебречь и считать температурный коэффициент линейного расширения величиной постоянной для данного вещества. В этом случае линейные размеры тела, как вытекает из формулы (2.28), зависят от изменения температуры следующим образом:

L = L 0 (1 +αΔT ) (2.29)

Из твердых тел сильнее всех расширяется воск, превышая в этом отношении многие жидкости. Коэффициент теплового расширения воска в зависимости от сорта в 25 - 120 раз больше чем у железа. Из жидкостей сильнее других расширяется эфир. Однако есть жидкость, расширяющаяся в 9 раз сильнее эфира - жидкая углекислота (СО3) при +20 градусах Цельсия. Ее коэффициент расширения в 4 раза больше, чем у газов.

Наименьшим коэффициентом теплового расширения из твердых тел обладает кварцевое стекло - в 40 раз меньше, чем железо. Кварцевую колбу раскаленную до 1000 градусов можно смело опускать в ледяную воду, не опасаясь за целостность сосуда: колба не лопается. Малым коэффициентом расширения, хотя и большим, чем у кварцевого стекла, отличается также алмаз.

Из металлов, меньше всего расширяется сорт стали, носящий название инвар, коэффициент его теплового расширения в 80 раз меньше, чем у обычной стали.

В приведенной ниже таблице 2.1 показаны коэффициенты объемного расширения некоторых веществ.

Таблица 2.1 - Значение изобарического коэффициента расширения некоторых газов, жидкостей и твёрдых тел при атмосферном давлении

Коэффициент объёмного расширения Коэффициент линейного расширения
Вещество Тем-ра, °С α×10 3 , (°C) -1 Вещество Тем-ра, °С α×10 3 , (°C) -1
Газы Алмаз 1,2
Графит 7,9
Гелий 0-100 3,658 Стекло 0-100 ~9
Кислород 3,665 Вольфрам 4,5
Жидкости Медь 16,6
Вода 0,2066 Алюминий
Ртуть 0,182 Железо
Глицерин 0,500 Инвар (36,1% Ni) 0,9
Этиловый спирт 1,659 Лед -10 o до 0 о С 50,7

Контрольные вопросы

1. Дать характеристику распределению нормальных колебаний по частотам.

2. Что такое фонон?

3. Объяснить физический смысл температуры Дебая. Чем определяется значение температуры Дебая для данного вещества?

4. Почему при низких температурах решёточная теплоёмкость кристалла не остается постоянной?

5. Что называется теплоёмкостью твёрдого тела? Чем она определяется?

6. Объяснить зависимость решёточной теплоёмкости кристалла Cреш от температуры T.

7. Получить закон Дюлонга-Пти для молярной теплоёмкости решётки.

8. Получить закон Дебая для молярной теплоёмкости решётки кристалла.

9. Какой вклад вносит электронная теплоемкость в молярную теплоемкость металла?

10. Что называется теплопроводностью твёрдого тела? Чем она характеризуется? Чем осуществляется теплопроводность в случаях металла и диэлектрика.

11. Как зависит коэффициент теплопроводности кристаллической решётки от температуры? Объяснить.

12. Дать определение теплопроводности электронного газа. Сравнить χ эл и χ реш в металлах и диэлектриках.

13. Дать физическое объяснение механизму теплового расширения твёрдых тел? Может ли КТР быть отрицательным? Если да, то объяснить причину.

14. Объяснить температурную зависимость коэффициента теплового расширения.


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча