28.09.2019

Полякова Л.С., Кашарин Д.В. Метеорология и климатология Прямая солнечная радиация. Прямая, рассеянная и суммарная радиация


Радиацию, поступающую на верхнюю границу атмосферы и затем на земную поверхность непосредственно от Солнца (от солнечного диска) в виде пучка параллельных лучей, называют прямой солнечной радиацией. Прямая солнечная радиация, поступающая на верхнюю границу атмосферы, изменяется во времени в небольших пределах, поэтому ееназывают солнечной постоянной (Sq). При среднем расстоянии от Земли до Солнца 149,5 * 106 км Sq составляет около 1400 Вт/м2.

При прохождении потока прямой солнечной радиации через атмосферу происходит его ослабление, вызванное поглощением (около 15 %) и рассеянием (около 25 %) энергии газами, аэрозолями, облаками.

Согласно закону ослабления Буге прямая солнечная радиация, поступающая на поверхность Земли при отвесном (перпендикулярном) падении лучей,

где р -- коэффициент прозрачности атмосферы; т - число оптических масс атмосферы.

Ослабление солнечного потока в атмосфере зависит от высоты Солнца над горизонтом Земли и прозрачности атмосферы. Чем меньше высота его над горизонтом, тем большее число оптических масс атмосферы проходит солнечный луч. За одну оптическую массу атмосферы принимают массу, которую проходят лучи при положении Солнца в зените (рис. 2.1). Когда Солнце находится у горизонта, луч проходит в атмосфере путь, почти в 35 раз больший, чем при падении лучей под углом 90° к поверхности Земли. Число оптических масс атмосферы (т) при различных высотах Солнца (Лф) приведено далее.

т 1,0 1,0 1,1 1,2 1,3 1,6 2,0 2,9 5,6 10,4 26,0 34,4 Л0 90 80 70 60 50 40 30 20 10 5 1 0

Чем больший путь в атмосфере проходят солнечные лучи, тем сильнее их поглощение и рассеяние и тем больше изменяется их интенсивность.

Коэффициент прозрачности зависит от содержания в атмосфере водяного пара и аэрозолей: чем их больше, тем меньше коэффициент прозрачности при одинаковом числе проходимых оптических масс. В среднем для всего потока радиации в идеально чистой атмосфере р на уровне моря составляет около 0,9, в действительных атмосферных условиях - 0,70...0,85, зимой он несколько больше, чем летом. Приход прямой радиации на земную поверхность зависит от угла падения солнечных лучей. Поток прямой солнечной радиации, падающей на горизонтальную поверхность, называют инсоляцией".

S" = Ssin А. Если земная поверхность не горизонтальна, как это большей частью и бывает в природе, то приход радиации на нее зависит уже не только от высоты Солнца, но и от наклона поверхности, и от ее ориентировки по отношению к странам света (от экспозиции).

На метеорологических станциях термометры устанавливают в особой будке, называемой психрометрической будкой, стенки которой жалюзийные. В такую будку не проникают лучи Солнца, но в то же время воздух имеет свободный доступ в нее.

Термометры устанавливают на штативе так, чтобы резервуары располагались на высоте 2 м от деятельной поверхности.

Срочную температуру воздуха измеряют ртутным психрометрическим термометром ТМ-4, который устанавливают вертикально. При температуре ниже --35 °С используют низкоградусный спиртовой термометр ТМ-9.

Экстремальные температуры измеряют по максимальному ТМ-1 и минимальному ТМ-2 термометрам, которые укладывают горизонтально.

Для непрерывной записи температуры воздуха служит термограф М-16А, который помещают в жалюзийной будке для самописцев. Колебания температуры воспринимаются изогнутой биметаллической пластинкой. В зависимости от скорости вращения барабана термографы бывают суточные и недельные.

В посевах и насаждениях температуру воздуха измеряют, не нарушая растительный покров. Для этого используют дистанционные электрические термометры сопротивления с малогабаритной приемной частью.

Внутренний вид психрометрической будки:

1 - гигрометр; 2 - сухой и смоченный термометры; 3 - максимальный и минимальный термометры

Термограф М-16А:

1 - барабан с лентой; 2-- стрелка с пером; 3 - биметаллическая пластинка

Яркое светило припекает нас горячими лучами и заставляет задуматься о значении радиации в нашей жизни, ее пользе и вреде. Что же такое солнечная радиация? Урок школьной физики предлагает нам для начала ознакомиться с понятием электромагнитной радиации в целом. Этим термином обозначают еще одну форму материи - отличную от вещества. Сюда относится и видимый свет, и спектр, не воспринимаемый глазом. То есть рентгеновские лучи, гамма-лучи, ультрафиолетовые и инфракрасные.

Электромагнитные волны

При наличии источника-излучателя радиации ее электромагнитные волны распространяются во всех направлениях со скоростью света. Эти волны, как любые другие, имеют определенные характеристики. К ним относятся частота колебаний и длина волны. Свойством испускать радиацию обладают любые тела, чья температура отличается от абсолютного нуля.

Солнце - основной и мощнейший источник радиации вблизи нашей планеты. В свою очередь, Земля (ее атмосфера и поверхность) и сама излучает радиацию, но в другом диапазоне. Наблюдение за температурными условиями на планете в течение длительных промежутков времени породило гипотезу о равновесии количества тепла, получаемого от Солнца и отдаваемого в космическое пространство.

Радиация солнца: спектральный состав

Абсолютное большинство (около 99%) солнечной энергии в спектре лежит в интервале длин волн от 0,1 до 4 мкм. Оставшийся 1% - лучи большей и меньшей длины, включая радиоволны и рентгеновское излучение. Около половины лучистой энергии солнца приходится на тот спектр, который мы воспринимаем взглядом, примерно 44% - на инфракрасное излучение, 9% - на ультрафиолетовое. Откуда нам известно, как делится солнечная радиация? Расчет ее распределения возможен благодаря исследованиям с космических спутников.

Есть вещества, способные приходить в особое состояние и излучать дополнительную радиацию другого волнового диапазона. К примеру, встречается свечение при низких температурах, не характерных для испускания света данным веществом. Данный вид радиации, получивший название люминесцентной, не поддается обычным принципам теплового излучения.

Явление люминесценции происходит после поглощения веществом некоторого количества энергии и перехода в другое состояние (т. н. возбужденное), более энергетически высокое, чем при собственной температуре вещества. Люминесценция появляется при обратном переходе - из возбужденного в привычное состояние. В природе мы можем наблюдать ее в виде ночных свечений неба и полярного сияния.

Наше светило

Энергия солнечных лучей - почти единственный источник тепла для нашей планеты. Собственная радиация, идущая из ее глубин к поверхности, имеет интенсивность, меньшую примерно в 5 тысяч раз. При этом видимый свет - один из важнейших факторов жизни на планете - лишь часть солнечной радиации.

Энергия солнечных лучей переходит в тепло меньшей частью - в атмосфере, большей - на поверхности Земли. Там она расходуется на нагревание воды и почвы (верхних слоев), которые затем отдают тепло воздуху. Будучи нагретыми, атмосфера и земная поверхность, в свою очередь, испускают инфракрасные лучи в космос, при этом охлаждаясь.

Солнечная радиация: определение

Ту радиацию, которая идет к поверхности нашей планеты непосредственно от солнечного диска, принято именовать прямой солнечной радиацией. Солнце распространяет ее во всех направлениях. С учетом огромного расстояния от Земли до Солнца, прямая солнечная радиация в любой точке земной поверхности может быть представлена как пучок параллельных лучей, источник которых - практически в бесконечности. Площадь, расположенная перпендикулярно лучам солнечного света, получает, таким образом, ее наибольшее количество.

Плотность потока радиации (или энергетическая освещенность) служит мерой ее количества, падающего на определенную поверхность. Это объем лучистой энергии, попадающей в единицу времени на единицу площади. Измеряется данная величина - энергетическая освещенность - в Вт/м 2 . Наша Земля, как всем известно, обращается вокруг Солнца по эллипсоидной орбите. Солнце находится в одном из фокусов данного эллипса. Поэтому ежегодно в определенное время (в начале января) Земля занимает положение ближе всего к Солнцу и в другое (в начале июля) - дальше всего от него. При этом величина энергетической освещенности меняется в обратной пропорции относительно квадрата расстояния до светила.

Куда девается дошедшая до Земли солнечная радиация? Виды ее определяются множеством факторов. В зависимости от географической широты, влажности, облачности, часть ее рассеивается в атмосфере, часть поглощается, но большинство все же достигает поверхности планеты. При этом незначительное количество отражается, а основное - поглощается земной поверхностью, под действием чего та подвергается нагреванию. Рассеянная же солнечная радиация частично также попадает на земную поверхность, частично ею поглощается и частично отражается. Остаток ее уходит в космическое пространство.

Как происходит распределение

Однородна ли солнечная радиация? Виды ее после всех "потерь" в атмосфере могут различаться по своему спектральному составу. Ведь лучи с различными длинами и рассеиваются, и поглощаются по-разному. В среднем атмосферой поглощается около 23% ее первоначального количества. Примерно 26% всего потока превращается в рассеянную радиацию, 2/3 которой попадает затем на Землю. В сущности, это уже другой вид радиации, отличный от первоначального. Рассеянная радиация посылается на Землю не диском Солнца, а небесным сводом. Она имеет другой спектральный состав.

Поглощает радиацию главным образом озон - видимый спектр, и ультрафиолетовые лучи. Излучение инфракрасного диапазона поглощается углекислым газом (диоксидом углерода), которого, кстати, в атмосфере очень немного.

Рассеяние радиации, ослабляющее ее, происходит для любых длин волн спектра. В процессе его частицы, попадая под электромагнитное воздействие, перераспределяют энергию падающей волны во всех направлениях. То есть частицы служат точечными источниками энергии.

Дневной свет

Вследствие рассеяния свет, идущий от солнца, при прохождении слоев атмосфер изменяет цвет. Практическое значение рассеяния - в создании дневного света. Если бы Земля была лишена атмосферы, освещение существовало бы лишь в местах попадания прямых или отраженных поверхностью лучей солнца. То есть атмосфера - источник освещения днем. Благодаря ей светло и в местах, недоступных прямым лучам, и тогда, когда солнце скрывается за тучами. Именно рассеяние придает воздуху цвет - мы видим небо голубым.

А от чего зависит солнечная радиация еще? Не следует сбрасывать со счетов и фактор мутности. Ведь ослабление радиации происходит двумя путями - собственно атмосферой и водяным паром, а также различными примесями. Уровень запыленности возрастает летом (как и содержание в атмосфере водяного пара).

Суммарная радиация

Под ней подразумевается общее количество радиации, падающей на земную поверхность, - и прямой, и рассеянной. Суммарная солнечная радиация уменьшается при облачной погоде.

По этой причине летом суммарная радиация в среднем выше до полудня, чем после него. А в первом полугодии - больше, чем во втором.

Что происходит с суммарной радиацией на земной поверхности? Попадая туда, она в большинстве своем поглощается верхним слоем почвы или воды и превращается в тепло, часть ее при этом отражается. Степень отражения зависит от характера земной поверхности. Показатель, выражающий процентное отношение отраженной солнечной радиации к общему ее количеству, попадающему на поверхность, именуют альбедо поверхности.

Под понятием собственного излучения земной поверхности понимают длинноволновую радиацию, излучаемую растительностью, снежным покровом, верхними слоями воды и почвы. Радиационным балансом поверхности именуют разность между ее поглощенным количеством и излучаемым.

Эффективное излучение

Доказано, что встречное излучение практически всегда меньше, чем земное. Из-за этого поверхность земли несет тепловые потери. Разность величин собственного излучения поверхности и атмосферного получило название эффективного излучения. Это фактически чистая потеря энергии и как результат - тепла ночью.

Существует оно и в дневные часы. Но в течение дня частично компенсируется или даже перекрывается поглощенной радиацией. Поэтому поверхность земли теплее днем, чем ночью.

О географическом распределении радиации

Солнечная радиация на Земле в течение года распределяется неравномерно. Ее распределение несет зональный характер, причем изолинии (соединяющие точки одинаковых значений) радиационного потока вовсе не идентичны широтным кругам. Такое несоответствие вызвано различными уровнями облачности и прозрачности атмосферы в разных районах Земного шара.

Наибольшее значение суммарная солнечная радиация в течение года имеет в субтропических пустынях с малооблачной атмосферой. Гораздо меньше оно в лесных областях экваториального пояса. Причина этого - повышенная облачность. По направлению к обоим полюсам этот показатель убывает. Но в районе полюсов возрастает заново - в северном полушарии меньше, в районе снежной и малооблачной Антарктиды - больше. Над поверхностью океанов в среднем солнечная радиация меньше, чем над материками.

Почти повсюду на Земле поверхность имеет положительный радиационный баланс, то есть за одно и то же время приток радиации больше эффективного излучения. Исключение составляют области Антарктиды и Гренландии с их ледяными плато.

Грозит ли нам глобальное потепление?

Но вышесказанное не означает ежегодного потепления земной поверхности. Излишек поглощенной радиации компенсируется утечкой тепла с поверхности в атмосферу, что происходит при изменениях фазы воды (испарении, конденсации в виде облаков).

Таким образом, радиационного равновесия как такового на поверхности Земли не существует. Зато имеет место тепловое равновесие - поступление и убыль тепла уравновешивается разными путями, в том числе радиационным.

Распределение баланса по карте

В одних и тех же широтах Земного шара радиационный баланс больше на поверхности океана, чем над сушей. Объяснить это можно тем, что слой, поглощающий радиацию, в океанах имеет большую толщину, в то же время эффективное излучение там меньше из-за холода морской поверхности по сравнению с сушей.

Значительные колебания амплитуды распределения его наблюдаются в пустынях. Баланс там ниже из-за высокого эффективного излучения в условиях сухого воздуха и малой облачности. В меньшей степени он понижен в районах муссонного климата. В теплый сезон облачность там повышена, а поглощенная солнечная радиация меньше, чем в других районах той же широты.

Конечно же, главный фактор, от которого зависит среднегодовое солнечное излучение, это широта того или иного района. Рекордные "порции" ультрафиолета достаются странам, расположенным вблизи экватора. Это Северо-Восточная Африка, ее восточное побережье, Аравийский полуостров, север и запад Австралии, часть островов Индонезии, западная часть побережья Южной Америки.

В Европе самую большую дозу как света, так и радиации принимают на себя Турция, юг Испании, Сицилия, Сардиния, острова Греции, побережье Франции (южная часть), а также часть областей Италии, Кипр и Крит.

А как у нас?

Солнечная суммарная радиация в России распределена, на первый взгляд, неожиданно. На территории нашей страны, как ни странно, вовсе не черноморские курорты держат пальму первенства. Самые большие дозы солнечного излучения приходятся на территории, пограничные с Китаем, и Северную Землю. В целом солнечная радиация в России особой интенсивностью не отличается, что вполне объясняется нашим северным географическим положением. Минимальное количество солнечного света достается северо-западному региону - Санкт-Петербургу вместе с прилегающими районами.

Солнечная радиация в России уступает показателям Украины. Там больше всего ультрафиолета достается Крыму и территориям за Дунаем, на втором месте - Карпаты с южными областями Украины.

Суммарная (к ней относится и прямая, и рассеянная) солнечная радиация, попадающая на горизонтальную поверхность, приводится по месяцам в специально разработанных таблицах для разных территорий и измеряется в МДж/м 2 . Например, солнечная радиация в Москве имеет показатели от 31-58 в зимние месяцы до 568-615 летом.

О солнечной инсоляции

Инсоляция, или объем полезного излучения, падающего на освещаемую солнцем поверхность, значительно варьируется в разных географических точках. Годовая инсоляция рассчитывается на один квадратный метр в мегаваттах. Например, в Москве эта величина - 1,01, в Архангельске - 0,85, в Астрахани - 1,38 МВт.

При определении ее нужно учитывать такие факторы, как время года (зимой ниже освещенность и долгота дня), характер местности (горы могут загораживать солнце), характерные для данной местности погодные условия - туман, частые дожди и облачность. Световоспринимающая плоскость может быть ориентирована вертикально, горизонтально или под наклоном. Количество инсоляции, как и распределение солнечной радиации в России, представляет собой данные, сгруппированные в таблицу по городам и областям с указанием географической широты.

Количество поступающей к земной поверхности прямой солнечной радиации (S) в условиях безоблачного неба зависит от высоты солнца и прозрачности . В таблице для трех широтных зон приведено распределении месячных сумм прямой радиации при безоблачном небе (возможных сумм) в виде осредненных значений для центральных месяцев сезонов и года.

Повышенный приход прямой радиации в Азиатской части обусловлен более высокой прозрачностью атмосферы в этом регионе. Высокие значения прямой радиации летом в северных районах России объясняются сочетанием высокой прозрачности атмосферы и большой продолжительностью дня

Снижает приход прямой радиации и может существенно изменить ее суточный и годовой ход. Однако при средних условиях облачности астрономический фактор является преобладающим и, следовательно, максимум прямой радиации наблюдается при наибольшей высоте солнца.

В большей части континентальных районов России в весенне-летние месяцы прямая радиация в дополуденные часы больше, чем в послеполуденные. Это связано с развитием конвективной облачности в послеполуденные часы и с уменьшением прозрачности атмосферы в это время суток по сравнению с утренними часами. Зимой соотношение до- и послеполуденных значений радиации обратное - дополуденные значения прямой радиации меньше в связи с утренним максимумом облачности и уменьшением ее во вторую половину дня. Разница между до- и послеполуденными значениями прямой радиации может достигать 25–35%.

В годовом ходе максимум прямой радиации приходится на июнь-июль за исключением районов Дальнего Востока, где происходит его смещение на май, а на юге Приморья в сентябре отмечается вторичный максимум.
Максимальная месячная сумма прямой радиации составляет на территории России 45–65% от возможной при безоблачном небе и даже на юге Европейской части она достигает лишь 70%. Минимальные значения отмечаются в декабре и январе.

Вклад прямой радиации в суммарный приход при действительных условиях облачности достигает максимума в летние месяцы и составляет в среднем 50–60%. Исключением является Приморский край, где наибольший вклад прямой радиации приходится на осенние и зимние месяцы.

Распределение прямой радиации при средних (действительных) условиях облачности по территории России в значительной степени зависит от . Это приводит к заметному нарушению зонального распределения радиации в отдельные месяцы. Особенно это проявляется в весенний период. Так, в апреле отмечается два максимума - один в южных районах


ЛЕКЦИЯ 3

РАДИАЦИОННЫЙ БАЛАНС И ЕГО СОСТАВЛЯЮЩИЕ

Солнечная радиация, достигшая земной поверхности, частично отражается от нее, а частично поглощается Землей. Однако Земля не только поглощает радиацию, но и сама излучает длинно­волновую радиацию в окружающую атмосферу. Атмосфера, по­глощая некоторую часть солнечной радиации и большую часть излучения земной поверхности, сама тоже излучает длинноволновую радиацию. Большая часть этого излучения атмосферы направлена к земной поверхности. Она называется встречным излу­чением атмосферы .

Разность между приходящими к деятельному слою Земли и уходящими от него потоками лучистой энергии называют радиа­ционным балансом деятельного слоя.

Радиационный баланс состоит из коротковолновой и длинно­волновой радиации. Он включает в себя следующие элементы, называемые составляющими радиационного баланса: прямая ра­диация, рассеянная радиация, отраженная радиация (ко­ротковолновая), излучение земной поверхности, встречное излучение атмосферы .

Рассмотрим составляющие радиационного баланса.

Прямая солнечная радиация

Энергетическая освещенность прямой радиации зависит от вы­соты Солнца и прозрачности атмосферы и возрастает с увеличением высоты места над уровнем моря. Облака нижнего яруса обычно пол­ностью или почти не пропускают прямую радиацию.

Длины волн солнечной радиации, достигающей земной поверх­ности, лежат в интервале 0,29-4,0 мкм. Примерно половина ее энергии приходится на фртосинтетически активную радиацию . В области ФАР ослабление радиации с уменьшением высоты Солнца происходит быстрее, чем в области инфракрасной радиа­ции. Приход прямой солнечной радиации, как уже указывалось, зависит от высоты Солнца над горизонтом, меняющейся как в те­чение суток, так и в течение года. Это обусловливает суточный и годовой ход прямой радиации.

Изменение прямой радиации в течение безоблачного дня (су­точный ход) выражено одновершинной кривой с максимумом в истинный солнечный полдень. Летом над сушей максимум мо­жет наступить до полудня, так как к полудню увеличивается за­пыленность атмосферы.

При продвижении от полюсов к экватору приход прямой ра­диации в любое время года возрастает, так как при этом увеличивается полуденная вы­сота Солнца.

Годовой ход прямой радиа­ции наиболее резко выражен на полюсах, так как зимой солнечная радиация здесь во­обще отсутствует, а летом ее приход достигает 900 Вт/м². В средних широтах максимум прямой радиации иногда на­блюдается не летом, а весной, так как в летние месяцы вследствие увеличения содер­жания водяного пара и пыли уменьшается прозрачность атмосфе­ры/Минимум приходится на период, близкий ко дню зимнего солн­цестояния (декабрь). На экваторе наблюдаются два максимума, равные примерно 920 Вт/м² в дни весеннего и осеннего равноден­ствия, и два минимума (около 550 Вт/м²) в дни летнего и зимне­го солнцестояния.

Рассеянная радиация

Максимум рассеянной радиации обычно значительно меньше, чем максимум прямой. Чем больше высота Солнца и больше загрязненность атмосферы, тем больше поток рассеянной радиации. Облака, не закрывающие Солнца, увеличивают приход рассеянной радиации по сравнению с ясным небом. Зависимость прихода рассеянной радиации от облачности сложная. Она определяется видом и количеством об­лаков, их вертикальной мощностью и оптическими свойствами. Рассеянная радиация облачного неба может колебаться более чем в 10 раз.

Снежный покров, отражающий до 70-90% прямой радиации, увеличивает рассеянную радиацию, которая затем рассеивается в атмосфере. С увеличением высоты места над уровнем моря рас­сеянная радиация при ясном небе уменьшается.

Суточный и годовой ход рассеянной радиации при ясном небе в общем соответствует ходу прямой радиации. Однако утром рас­сеянная радиация появляется еще до восхода Солнца, а вечером она еще поступает в период сумерек, т. е. после захода. В годо­вом ходе максимум рассеянной радиации наблюдается летом.

Суммарная радиация

Сумму рассеянной и прямой радиации, падающей на го­ризонтальную поверхность, называют суммарной радиацией .

Она является основной составляющей радиа­ционного баланса. Её спектральный состав по сравнению с пря­мой и рассеянной радиацией более устойчив и почти не зависит от высоты Солнца, когда, она составляет более 15°.

Соотношение между прямой и рассеянной радиацией в составе суммарной радиации зависит от высоты Солнца, облачности и за­грязненности атмосферы. С увеличением высоты Солнца доля рас­сеянной радиации при безоблачном небе уменьшается. Чем проз­рачнее атмосфера, тем меньше доля рассеянной радиации. При сплошной плотной облачности суммарная радиация полностью со­стоит из рассеянной радиации. Зимой вследствие отражения ра­диации от снежного покрова и ее вторичного рассеяния в атмо­сфере доля рассеянной радиации в составе суммарной заметно увеличивается.

Приход суммарной радиации при наличии облачности меняет­ся в больших пределах. Наибольший приход ее наблюдается при ясном небе или при небольшой облачности, не закрывающей Солнца.

В суточном и годовом ходе изменения суммарной радиации почти прямо пропорциональны изменению высоты Солнца. В су­точном ходе максимум суммарной радиации при безоблачном не­бе приходится обычно на полуденное время. В годовом ходе мак­симум суммарной радиации отмечается в северном полушарии обычно в июне, в южном - в декабре.

Отраженная радиация. Альбедо

Часть суммарной радиации, приходящей к деятельному слою Земли, отражается от него. Отношение отраженной части радиа­ции к ко всей приходящей суммарной радиации называют от­ражательной способностью , или альбедо (А) данной подстилающей поверхности.

Альбедо поверхности зависит от ее цвета, шероховатости, влажности и других свойств.

Альбедо различных естественных поверхностей (по В. Л. Гаевскому и М. И. Будыко)

Поверхность

Альбедо, %

Поверхность

Альбедо, %

Свежий сухой снег

80-95

Поля ржи и пшеницы

10-25

Загрязненный снег

40-50

Картофельные поля

15-25

Морской лед

30-40

Хлопковые поля

20-25

Темные почвы

5-15

Луга

15-25

Сухие глинистые почвы

20-35

Сухая степь

20-30

Альбедо водных поверхностей при высоте Солнца свыше 60° меньше, чем альбедо суши, поскольку солнечные лучи, проникая в воду, в значительной мере поглощаются и рассеиваются в ней. При отвесном падении лучей А = 2- 5%, при высоте Солнца мень­ше 10° А = 50- 70%. Большое альбедо льда и снега обусловлива­ет замедленный ход весны в полярных районах и сохранение там вечных льдов.

Наблюдения за альбедо суши, моря и облачного покрова про­водятся с искусственных спутников Земли. Альбедо моря позво­ляет рассчитывать высоту волн, альбедо облаков характеризует их мощность, а альбедо разных участков суши позволяет судить о степени покрытия полей снегом и о состоянии растительного покрова.

Альбедо всех поверхностей, а особенно водных, зависит от высоты Солнца: наименьшее альбедо бывает в полуденные часы, наибольшее - утром и вечером. Это связано с тем, что при ма­лой высоте Солнца в составе суммарной радиации возрастает до­ля рассеянной, которая в большей степени, чем прямая радиа­ция, отражается от шероховатой подстилающей поверхности.

Длинноволновое излучение Земли и атмосферы

Земное излучение несколько меньше излучения абсолютно черного тела при той же температуре.

Излучение земной поверхности происходит непрерывно. Чем выше температура излучающей поверхности, тем интенсивнее ее излучение. Также непрерывно происходит излучение атмосферы, которая, поглощая часть солнечной радиации и излучения земной поверхности, сама излучает длинноволновую радиацию.

В умеренных широтах при безоблачном небе излучение атмо­сферы составляет 280-350 Вт/м², а в случае облачного неба оно на 20-30% больше. Около 62-64% этого излучения направлено к земной поверхности. Приход его на земную поверхность состав­ляет встречное излучение атмосферы. Разность этих двух потоков характеризует потерю лучистой энергии деятельным слоем. Эту разность называют эффективным излучением Еэф .

Эффективное излучение деятельного слоя зависит от его тем­пературы, от температуры и влажности воздуха, а также от об­лачности. С повышением температуры земной поверхности Еэф увеличивается, а с повышением температуры и влажности возду­ха уменьшается. Особенно влияют на эффективное излучение об­лака, так как капли облаков излучают почти так же, как и дея­тельный слой Земли. В среднем Еэф ночью и днём при ясном небе в разных пунктах земной поверхности изменяется в пределах 70-140 Вт/м².

Суточный ход эффективного излучения характеризуется мак­симумом в 12-14 ч и минимумом перед восходом Солнца. Годовой ход эффективного излу­чения в районах с континентальным климатом характеризуется максимумом в летние месяцы и минимумом в зимние. В районах с морским климатом годовой ход эффективного излучения выра­жен слабее, чем в районах, расположенных в глубине континента

Излучение земной поверхности поглощается водяным паром и углекислым газом, содержащимися в воздухе. Но коротковол­новую радиацию Солнца атмосфера в значительной степени пропускает. Это свойство атмосферы называется «оранжерейным эф­фектом» , поскольку атмосфера при этом действует подобно стек­лам в теплицах: стекло хорошо пропускает солнечные лучи, на­гревающие почву и растения в теплице, но плохо пропускает во внешнее пространство тепловое излучение нагревшейся почвы. Расчеты показывают, что при отсутствии атмосферы средняя тем­пература деятельного слоя Земли была бы на 38°С, ниже факти­чески наблюдающейся и Земля была бы покрыта вечным льдом.

Если приход радиации больше расхода, то радиационный ба­ланс положителен и деятельный слой Земли нагревается. При отрицательном радиационном балансе этот слой охлаждается. Радиационный баланс днем обычно положителен, а ночью отри­цателен. Примерно за 1-2 ч до захода Солнца он становится от­рицательным, а утром, в среднем за 1 ч после восхода Солнца снова делается положительным. Ход радиационного баланса днем при ясном небе близок к ходу прямой радиации.

Изучение радиационного баланса сельскохозяйственных угодий позволяет рассчитывать количество радиации, поглощенной посевами и почвой, в зависимости от высоты Солнца, структуры посева, фазы развития растений. Для оценки разных приемов ре­гулирования температуры и влажности почвы, испарения и дру­гих величин определяют радиационный баланс сельскохозяйствен­ных полей при различных типах растительного покрова.

Методы измерения солнечной радиации и составляющих радиационного баланса

Для измерения потоков солнечной радиации применяются аб­солютные и относительные методы и соответственно разработаны абсолютные и относительные актинометрические приборы. Абсо­лютные приборы обычно применяют только для тарировки и по­верки относительных приборов.

Относительные приборы применяются при регуляр­ных наблюдениях на сети метеостанций, а также в экспедициях, и при полевых наблюдениях. Из них наиболее широко использу­ются термоэлектрические приборы: актинометр, пиранометр и альбедометр. Приемником солнечной радиации у этих приборов слу­жат термобатареи, составленные из двух металлов (обычно ман­ганина и константана). В зависимости от интенсивности радиации между Спаями термобатареи создается разность температур и воз­никает электрический ток различной силы, который измеряется гальванометром. Для перевода делений шкалы гальванометра в абсолютные единицы применяются переводные множители, ко­торые определяются для данной пары: актинометрический при­бор - гальванометр.

Актинометр термоэлектрический (М-3) Савино­ва - Янишевского служит для измерения прямой радиации, при­ходящий на поверхность, перпендикулярную к солнечным лучам.

Пиранометр (М-80М) Янишевского служит для измере­ния суммарной и рассеянной радиации, приходящей на горизон­тальную поверхность.

При наблюдениях приемная часть пиранометра устанавливает­ся горизонтально. Для определения рассеянной радиации пирано­метр затеняется от прямой радиации теневым экраном в виде круглого диска, закрепленного на стержне на расстоянии 60 см от приемной поверхности. При измерении суммарной радиации те­невой экран отводится в сторону

Альбедометр - это пиранометр, приспособленный также. Для измерения отраженной радиации. Для этого служит устрой­ство, позволяющее поворачивать приемную часть прибора вверх (для измерения прямой) и вниз (для измерения отраженной радиаций). Определив альбедометром суммарную и отраженную радиацию, вычисляют альбе­до подстилающей поверхности. Для полевых измерений использу­ют альбедометр походный М-69.

Балансомер термоэлектрический М-10М. Этот прибор применяется для измерения радиационного баланса под­стилающей поверхности.

Кроме рассмотренных приборов, используют также люкс­метры - фотометрические приборы для измерения освещенно­сти, спектрофотометры, различные приборы для измере­ния ФАР и т. д. Многие актинометрические приборы приспособ­лены для непрерывной записи составляющих радиационного баланса.

Важной характеристикой режима солнечной радиации являет­ся продолжительность солнечного сияния. Для ее определения служит гелиограф .

В полевых условиях наиболее часто применяются пиранометры, походные альбедометры, балансомеры и люксметры. Для на­блюдений среди растений наиболее удобны походные альбедомет­ры и люксметры, а также специальные микропиранометры.

Солнце – источник тепла и света, дарящий силы и здоровье. Однако не всегда его воздействие является положительным. Нехватка энергии или ее переизбыток могут расстроить естественные процессы жизнедеятельности и спровоцировать различные проблемы. Многие уверены, что загорелая кожа выглядит намного красивее, чем бледная, однако если долгое время провести под прямыми лучами, можно получить сильный ожог. Солнечная радиация – это поток поступающей энергии, распространяющийся в виде электромагнитных волн, проходящих через атмосферу . Измеряется мощностью переносимой ею энергии на единицу площади поверхности (ватт/м 2). Зная, как влияет солнце на человека, можно предотвратить его отрицательное воздействие.

Что представляет собой солнечная радиация

О Солнце и его энергии написано множество книг. Солнце является главным источником энергии всех физико-географических явлений на Земле . Одна двухмиллиардная доля света проникает в верхние слои атмосферы планеты, большая же часть оседает в мировом пространстве.

Лучи света – первоисточники других видов энергии. Попадая на поверхность земли и в воду, они формируются в тепло, воздействуют на климатические особенности и погоду.

Степень воздействия световых лучей на человека зависит от уровня радиации, а также периода, проведенного под солнцем. Многие типы волн люди применяют себе на пользу, пользуясь рентгеновским облучением, инфракрасными лучами, а также ультрафиолетом. Однако солнечные волны в чистом виде в большом количестве могут негативно отразиться на здоровье человека.

Количество радиации зависит от:

  • положения Солнца. Наибольшее количество облучения приходится на равнины и пустыни, где солнцестояние довольно высокое, а погода безоблачная . Полярные области получают минимальное количество света, так как облачность поглощает значительную часть светового потока;
  • длительности дня. Чем ближе к экватору, тем продолжительнее день. Именно там люди получают больше тепла;
  • свойств атмосферы: облачности и влажности. На экваторе повышенная облачность и влажность, что является препятствием для прохождения света. Именно поэтому количество светового потока там меньше, чем в тропических зонах.

Распределение

Распределение солнечного света по земной поверхности неравномерное и имеет зависимость от:

  • плотности и влажности атмосферы. Чем они больше, тем уменьшается облучение;
  • географической широты местности. Количество получаемого света повышается от полюсов к экватору ;
  • движения Земли. Объем излучения меняется в зависимости от времени года;
  • характеристик земной поверхности. Большое количество светового потока отражается в светлых поверхностях, например, снеге. Наиболее слабо отражает световую энергию чернозем.

Из-за протяженности своей территории уровень излучения в России значительно варьируется. Солнечное облучение в северных регионах примерно такое — 810 кВт-час/м 2 за 365 дней, в южных – более 4100 кВт-час/м 2 .

Немаловажное значение имеет длительность часов, на протяжении которых светит солнце . Эти показатели разнообразны в различных регионах, на что влияет не только географическая широта, но и наличие гор. На карте солнечной радиации России хорошо заметно, что в некоторых регионах не целесообразно устанавливать линии электроснабжения, так как естественный свет вполне способен обеспечить потребности жителей в электричестве и тепле.

Виды

Световые потоки достигают Земли различными путями. Именно от этого зависят виды солнечной радиации:

  • Исходящие от солнца лучи называются прямой радиацией . Их сила имеет зависимость от высоты расположения солнца над уровнем горизонта. Максимальный уровень наблюдается в 12 часов дня, минимальный – в утреннее и вечернее время. Кроме того, интенсивность воздействия имеет связь с временем года: наибольшая возникает летом, наименьшая – зимой. Характерно, что в горах уровень радиации больше, чем на равнинных поверхностях. Также грязный воздух снижает прямые световые потоки. Чем ниже солнце над уровнем горизонта, тем меньше ультрафиолета.
  • Отраженная радиация – это излучение, которое отражается водой или поверхностью земли.
  • Рассеянная солнечная радиация формируется при рассеивании светового потока. Именно от нее зависит голубая окраска неба при безоблачной погоде.

Поглощенная солнечная радиация имеет зависимость от отражательной способности земной поверхности – альбедо.

Спектральный состав излучения многообразен:

  • цветные или видимые лучи дают освещенность и имеют большое значение в жизни растений;
  • ультрафиолет должен проникать в тело человека умеренно, так как его переизбыток или нехватка могут нанести вред;
  • инфракрасное облучение дает ощущение тепла и воздействует на рост растительности.

Суммарная солнечная радиация – это проникающие на землю прямые и рассеянные лучи . При отсутствии облачности, примерно около 12 часов дня, а также в летнее время года она достигает своего максимума.

Истории наших читателей

Владимир
61 год

Как происходит воздействие

Электромагнитные волны состоят из различных частей. Есть невидимые, инфракрасные и видимые, ультрафиолетовые лучи. Характерно, что радиационные потоки имеют разную структуру энергии и по-разному влияют на людей.


Световой поток может оказывать благотворное, целебное воздействие на состояние человеческого тела
. Проходя через зрительные органы, свет регулирует метаболизм, режим сна, влияет на общее самочувствие человека. Кроме того, световая энергия способна вызывать ощущение тепла. При облучении кожи в организме происходят фотохимические реакции, способствующие правильному обмену веществ.

Высокой биологической способностью обладает ультрафиолет, имеющий длину волны от 290 до 315 нм. Эти волны синтезируют витамин D в организме, а также способны уничтожать вирус туберкулеза за несколько минут, стафилококк – в течение четверти часа, палочки брюшного тифа – за 1 час.

Характерно, что безоблачная погода снижает длительность возникающих эпидемий гриппа и других заболеваний, например, дифтерии, имеющих способность передаваться воздушно-капельным путем.

Естественные силы организма защищают человека от внезапных атмосферных колебаний: температуры воздуха, влажности, давления. Однако иногда подобная защита ослабевает, что под воздействием сильной влажности совместно с повышенной температурой приводит к тепловому удару.

Воздействие облучения имеет связь от степени его проникновения в организм. Чем длиннее волны, тем сильнее сила излучения . Инфракрасные волны способны проникать до 23 см под кожу, видимые потоки – до 1 см, ультрафиолет – до 0,5-1 мм.

Все виды лучей люди получают во время активности солнца, когда пребывают на открытых пространствах. Световые волны позволяют человеку адаптироваться в мире, именно поэтому для обеспечения комфортного самочувствия в помещениях необходимо создать условия оптимального уровня освещения.

Воздействие на человека

Влияние солнечного излучения на здоровье человека определяется различными факторами. Имеет значение место жительства человека, климат, а также количество времени, проведенного под прямыми лучами.

При нехватке солнца у жителей Крайнего Севера, а также у людей, чья деятельность связана с работой под землей, например у шахтеров, наблюдаются различные расстройства жизнедеятельности, снижается прочность костей, возникают нервные нарушения.

Дети, недополучающие света, страдают рахитом чаще, чем остальные . Кроме того, они более подвержены заболеваниям зубов, а также имеют более длительное протекание туберкулеза.

Однако слишком продолжительное воздействие световых волн без периодической смены дня и ночи может пагубно отразиться на состоянии здоровья. Например, жители Заполярья часто страдают раздражительностью, утомлением, бессонницей, депрессиями, снижением трудоспособности.

Радиация в Российской Федерации имеет меньшую активность, чем, к примеру, в Австралии.

Таким образом, люди, которые находятся под длительным излучением:

  • подвержены высокой вероятности возникновения рака кожных покровов;
  • имеют повышенную склонность к сухости кожи, что, в свою очередь, ускоряет процесс старения и появление пигментации и ранних морщин;
  • могут страдать ухудшением зрительных способностей, катарактой, конъюнктивитом;
  • обладают ослабленным иммунитетом.

Нехватка витамина D у человека является одной из причин злокачественных новообразований, нарушений обмена веществ , что приводит к излишней массе тела, эндокринным нарушениям, расстройству сна, физическому истощению, плохому настроению.

Человек, который систематически получает свет солнца и не злоупотребляет солнечными ванными, как правило, не испытывает проблем со здоровьем:

  • имеет стабильную работу сердца и сосудов;
  • не страдает нервными заболеваниями;
  • обладает хорошим настроением;
  • имеет нормальный обмен веществ;
  • редко болеет.

Таким образом, только дозированное поступление излучения способно положительно отразиться на здоровье человека.

Как защититься


Переизбыток облучения может спровоцировать перегрев организма, ожоги, а также обострение некоторых хронических болезней
. Любителям принимать солнечные ванны необходимо позаботиться о выполнении нехитрых правил:

  • с осторожностью загорать на открытых пространствах;
  • во время жаркой погоды скрываться в тени под рассеянными лучами. В особенности это касается маленьких детей и пожилых людей, страдающих туберкулезом и заболеваниями сердца.

Следует помнить, что загорать необходимо в безопасное время суток, а также не находиться длительное время под палящим солнцем. Кроме того, стоит оберегать от теплового удара голову, нося головной убор, солнцезащитные очки, закрытую одежду, а также использовать различные средства от загара.

Солнечная радиация в медицине

Световые потоки активно применяют в медицине:

  • при рентгене используется способность волн проходить через мягкие ткани и костную систему;
  • введение изотопов позволяет зафиксировать их концентрацию во внутренних органах, обнаружить многие патологии и очаги воспаления;
  • лучевая терапия способна разрушать рост и развитие злокачественных новообразований .

Свойства волн успешно используют во многих физиотерапевтических аппаратах:

  • Приборы с инфракрасным излучением применяют для теплолечения внутренних воспалительных процессов, заболеваний костей, остеохондроза, ревматизма, благодаря способности волн восстанавливать клеточные структуры.
  • Ультрафиолетовые лучи могут отрицательно сказываться на живых существах, угнетать рост растений, подавлять микроорганизмы и вирусы.

Гигиеническое значение солнечной радиации велико. Аппараты с ультрафиолетовым излучением используют в терапии:

  • различных травм кожных покровов: ран, ожогов;
  • инфекций;
  • болезней ротовой полости;
  • онкологических новообразований.

Кроме того, радиация имеет положительное влияние на организм человека в целом: способна придать сил, укрепить иммунную систему, восполнить нехватку витаминов .

Солнечный свет является важным источником полноценной жизни человека. Достаточное его поступление приводит к благоприятному существованию всех живых существ на планете. Человек не может снизить степень радиации, однако в силах оградить себя от его отрицательного воздействия.


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча