05.03.2020

Основы прогнозирования обстановки на пожаре. Локализация и ликвидация пожаров. Прогнозирование и оценка пожарной обстановки в зданиях Прогнозирование развития пожара


В результате изучения объекта в оперативно-тактическом отношении в зависимости от степени пожарной опасности технологического процесса производства, величины пожарной нагрузки, концентрации материальных ценностей и конструктивных особенностей здания, устанавливается место возникновения пожара в наиболее сложный по обстановке вариант возможного пожара. На такие объекты, как нефтебазы, театры, нефтеперерабатывающие заводы, электростанции, производственные здания с пожаровзрывоопасной технологией разрабатывается несколько вариантов возможного пожара, каждый из которых может иметь свои особенности. Так, для нефтебазы рассматривается вариант пожара в резервуаре, тушение которого потребует наибольшее количество сил и средств. Одновременно рассматривается усложненный вариант тушения пожара, когда горят все резервуары, расположенные в одном обваловании. Для театра рассматриваются варианты пожара на сцене и в зрительном зале.

После того как будет определено место возникновения пожара, производится оценка обстановки к моменту введения сил и средств первым прибывшим пожарным подразделением. Одной из основных величин, характеризующих обстановку на пожаре, является его площадь на данный момент времени, которая определяется расчетом.

В отдельных случаях при разработке планов пожаротушения площадь пожара расчетом не определяется, а принимается равной площади помещения. Так, при пожаре на сцене театра при опущенном противопожарном занавесе за максимальную площадь пожара принимается площадь сцены; при пожаре на лесоскладе - площадь квартала, при пожарах в наземных резервуарах о ЛВЖ и ГЖ - площадь зеркала горящего резервуара или площадь зеркала горящих резервуаров, находящихся в одном обваловании; при пожарах в кабельных помещениях электростанций и металлургических заводов (кабельные шахты, полуэтажи, подвалы) - помещения наибольшего объема, а в кабельных туннелях - объем двух смежных отсеков.

Исходными данными для определения площади пожара являются: время свободного развития пожара τ св, мин; линейная скорость распространения горения V л, м/мин и форма развития пожара.



Время свободного развития пожара

где τ д.с. - время с момента возникновения пожара до сообщения о нем в пожарную часть (принимается в дневное время 5-8, в ночное 8-12 мин); τ сл - время следования первого пожарного подразделения к месту вызова, мин; τ б.р. - время боевого развертывания первого пожарного подразделения (принимается в соответствии с нормативами по пожарно-строевой подготовке в зависимости от расстояния до водоисточников), мин.

Линейная скорость распространения горения принимается по справочникам. Так как в процессе развития пожара V л не является постоянной, то в первые 10 мин она условно принимается равной 0,5V л табл. , а после 10 мин свободного горения и до подачи стволов V л = V л табл. .

При распространении пожара после введения стволов на его тушение V л принимается условно равной 0,5V л табл. . Если после 10 мин горение распространилось через проем в соседнее помещение, то скорость распространения горения в нем принимается равной V л табл. . Такой же принимают скорость, если распространение горения в соседние помещения происходит в результате прогорания перегородки или закрытой двери. При этом время прогорания перегородки или закрытой двери учитывается как время развития пожара.

Следует иметь в виду, что если на пути движения огня имеются разрывы в пожарной нагрузке, которые перекрываются факелом пламени, то они в учет не принимаются. Однако в этом случае значение V л следует принимать минимальным. Кроме того, на скорость распространения горения влияет наличие направленных газовых потоков. Если место возникновения пожара удалено от проемов, через которые происходит газообмен, то скорость распространения горения в сторону проемов следует принимать в 1,5-2 раза большей, чем в противоположную.

Во всех остальных случаях при пожарах в ограждениях при равномерно распределенной пожарной нагрузке и отсутствии газовых потоков фронт пламени по всем направлениям распространяется с одинаковой скоростью. При пожарах на открытом пространстве максимальное значение скорости распространения горения следует принимать по направлению ветра.

При горении волокнистых материалов в разрыхленном состоянии, пыли и жидкостей значение V л принимается равным табличному с момента возникновения горения. При горении растекающейся жидкости скорость распространения горения принимается равной скорости растекания жидкости.

Для определения площади пожара при горении твердых горючих материалов находят расстояние, на которое переместится фронт пламени от первоначального места его возникновения за время свободного развития. На основании этого уточняют форму площади пожара. Расстояние, пройденное фронтом пламени

При τ св ≤ 10 мин

При τ св > 10 мин

L=5V л +V л τ 2

(до момента введения первого ствола), где 5V л = 0,5V л ×10 мин; τ 2 = τ св - 10

При развитии пожара после введения стволов до локализации пожара

L=5V л + V л τ 2 +0,5V л τ 3

где τ 3 = τ общ - (10 - τ 2)

Величину L, найденную с учетом линейной скорости распространения горения на всех направлениях, отложить в масштабе от принятого очага пожара, который обозначается красным флажком на плане помещения, и, таким образом, определить границы площади пожара и его геометрическую форму.

Если на пути распространения фронта пламени нет никаких преград, то площадь пожара будет иметь круговую форму. Если фронт пламени будет ограничен с одной стороны стеной или иной преградой, то площадь пожара будет иметь форму полукруга. При ограничении фронта пламени с двух сторон площадь пожара, в зависимости от места его возникновения, принимает угловую или прямоугольную форму. Если ширина здания не превышает 10 м, то к моменту введения стволов первый прибывшим пожарным подразделением пожар, независимо от места его возникновения, как правило, принимает прямоугольную форму.

Площадь пожара:

а) при круговом развитии и времени распространения горения до 10 мин включительно

при τ св > 10 мин

При развитии пожара после введения ствола до локализации пожара

б) при угловом распространении горения (α = 90°) и в форме полукруга указанные формулы соответственно имеют вид:

для углового развития при τ св ≤ 10 мин

при τ св > 10 мин

,

для полукруга при τ св ≤ 10 мин

,

при τ св > 10 мин

в) при прямоугольной форме развития пожара:

при τ св ≤ 10 мин

;

при τ св > 10 мин

при распространении пожара после введения стволов до локализации

где а - ширина фронта пламени (ширина помещения); n - число направлений развития пожара; S п - площадь пожара, м 2 .

По найденной площади пожара определяется возможность локализации его первым прибывшим пожарным подразделением. Для этого следует проверить, выполняется ли условие локализации:

где Q ф, Q тр - соответственно фактический и требуемый расходы огнетушащего вещества, л/с.

Требуемый расход огнетушащего вещества для тушения пожара:

где J тр - требуемая интенсивность подачи огнетушащего вещества, л/(с×м 2).

Фактический расход определяется, исходя из тактических возможностей отделений по подаче огнетушащих веществ на тушение с учетом численности боевых расчетов и проведения других работ (разведка пожара, спасание людей и т.д.).

Для первого прибывшего подразделения (при условия подачи в качестве огнетушащего вещества воды или растворов) принято, что отделение на автонасосе и автоцистерне может обеспечить подачу стволов с общим расходом 14 л/с (два ствола А или два ГПС); при работе в изолирующих противогазах - одного ствола А или Б.

Если подразделение не может подать огнетушащее вещество на всю площадь пожара, то проверяется возможность локализации его по площади тушения с учетом возможных направлений ввода стволов через оконные, дверные и иные проемы. В этом случае

где S т - площадь тушения, м 2 .

Площадь тушения:

при тушении по фронту

при тушении по периметру:

а)при прямоугольной форме развития пожара

S т = 2h(a+b-2h)

при круговой форме развития пожара

где h - глубина тушения (для ручных стволов h = 5 м, для лафетных - 10м); а - ширина площади пожара, м; b - длина площади пожара, м; R - радиус пожара при круговой форме его развития, м.

Далее необходимо сравнить требуемый расход огнетушащего вещества с фактическим и сделать вывод: сможет ли первое прибывшее подразделение подать требуемый расход огнетушащих веществ на тушение и одновременно выполнить другие необходимые работы, обеспечивающие успешное тушение пожара и опасение людей, т.е. сможет ли локализовать пожар или нет. Если первое прибывшее пожарное подразделение локализовать пожар не сможет, то необходимо привлечь силы и средства по повышенному номеру вызова.

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

Академия Государственной противопожарной службы

А.В. Подгрушный, Б.Б. Захаревский, А.Н. Денисов, Ю.М. Сверчков

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К РЕШЕНИЮ ТАКТИЧЕСКИХ ЗАДАЧ ПО ТЕМЕ

«ОСНОВЫ ПРОГНОЗИРОВАНИЯ ОБСТАНОВКИ НА ПОЖАРЕ. ЛОКАЛИЗАЦИЯ И ЛИКВИДАЦИЯ ПОЖАРОВ»

Одобрены редакционно-издательским советом Академии ГПС МЧС РФ

Москва 2005

А.В. Подгрушный, Б.Б. Захаревский, А.Н. Денисов, Ю.М. Сверчков. Методические указания к решению тактических задач по теме «Основы прогнозирования обстановки на пожаре. Локализация и ликвидация пожаров». - М.: Академия ГПС МЧС России, 2005.- 37 с.

Выполнены в соответствии с программой курса “Пожарная тактика” для слушателей очной и заочной форм обучения.

Рецензенты: д.т.н., профессор С.В. Пузач; к.т.н., доцент С.А. БобковАвторы выражают благодарность рецензентам и преподавателям кафедры Пожарной тактики и службы, а также Отделу технических средств обучения Академии за оказанную помощь при работе над пособием.

Академия Государственной противопожарной службы МЧС России, 2005

Расчёт параметров развития пожара4Расчёт параметров тушения пожара11Построение совмещенного графика изменения площади пожара, требуемого и фактического расхода огнетушащих веществ19

Литература24Приложения

Расчёт параметров развития пожара

При решении пожарно-тактических задач используют следующие параметры развития пожара:

Пространственные: площадь пожара Sп, м²; площадь тушения Sт, м²; периметр пожара Рп, м; фронт пожара Фп, м.

Временные: время свободного развития пожара τсв.р, мин.

Скоростные: линейную скорость распространения пламени Vл, м/мин; скорость роста площади пожара VSп, м²/мин; скорость роста периметра пожара VРп, м/мин; скорость роста фронта пожара VФп, м/мин.

Линейная скорость распространения горения характеризует

Способность горючего материала к перемещению по своей поверхности высокотемпературной зоны химических превращений (пламенной зоны горения). Этот параметр зависит от многих факторов, в частности от физико-химических свойств горючего материала, его агрегатного состояния, условий тепло-, массо- и газообмена на пожаре и т.п. Величину Vл определяют по формуле

Где: ∆L – путь, пройденный пламенем за время ∆τ, м.

Средние значения Vл при пожарах на различных объектах приведены в Приложение 1 или в НПБ 201-96.

Время свободного развития пожара

св. р- временной промежуток

От момента возникновения горения до начала подачи первых приборов тушения на его ликвидацию:

св. р д.ссбсл б. р;(1.2)

Где: τд.с - время от возникновения до сообщения о пожаре (принимается 8-10 мин для городских населённых пунктов, 10-14 мин - для сельских населенных пунктов или исходя из опыта тушения пожаров), мин; τсб - время, затрачиваемое на обработку вызова диспетчером, сбор и выезд по тревоге; сб составляет 1 мин; τсл - время следования к месту пожара боевых расчётов пожарных подразделений, мин; τб.р - время боевого развёртывания (прил. 2,3).

Площадь пожара - площадь проекции зоны горения на горизонтальную (вертикальную) плоскость, м².

Если горение происходит на нескольких этажах здания, то общая площадь пожара определяется как сумма площадей на всех этажах:

S п   S п,ii1

Где: Sпi - площадь пожара на i -м этаже, м2; n - число этажей.

Периметр пожара - длина внешней границы площади пожара, м.

Фронт пожара - часть периметра (или периметр) пожара, в направлении которого происходит наиболее интенсивное распространение горения, м.

Для вычисления площади пожара, его периметра и фронта необходимо знать его геометрическую форму.

При определении формы площади пожара задаются следующими условиями (ограничениями):

Огонь от очага воспламенения распространяется по всем направлениям с одинаковой скоростью. Поэтому, первоначально пожар имеет круговую форму и его площадь можно определить по формуле

S п  k    L2 ;(1.4)

Где: k - коэффициент, учитывающий величину угла  , в направлении которого происходит распространение пламени; k = 1, если  = 360º (рис. 1.1); k = 0,5 , если α = 180º (рис. 1.2); k = 0,25 , если α = 90º (рис.1.3); L - путь, пройденный пламенем за время τ.

При достижении пламенем границ горючей нагрузки или ограждающих стен здания (помещения), фронт горения спрямляется и распространение пламени идет вдоль границы горючей нагрузки или стен здания (рис.1.4);

Линейная скорость распространения пламени Vл

С развитием

Пожара меняется: в первые 10 мин свободного развития пожара Vл

Принимают равной половине V норм; после 10 мин - нормативные значения (норм

Vл), с начала воздействия огнетушащими средствами на зону горениядо локализации пожара, используемую в расчёте раза.

Норм луменьшают в два

Для определения формы площади пожара и численных значений Sп на конкретный момент времени необходимо знать путь, пройденный пламенем на этот момент времени. В общем случае путь пройденный пламенем за промежуток времени определяется по формуле:

L = Vл·τ;(1.5)

С учётом условия 3), при известных значениях Vл, путь, пройденный пламенем, для характерных временных промежутков развития пожара, будет определяться по следующим формулам:

1) L = 0,5 ·VЛ ·τ(1.6)

2) L = 0,5 ·VЛ·10+VЛ·(τ-10)(1.7)

3) [ св. р ≤ τ< τЛОК]L = 0,5 ·VЛ·10+VЛ·(св. р -10)+0,5· VЛ·(τ- св. р)(1.8)

Динамика изменения площади пожара характеризуется скоростью роста площади пожара. Этот параметр определяется как первая производная от площади пожара по времени:

V Sп  dS п;(1.9)

Если пожар имеет прямоугольную форму, то площадь пожара увеличивается по линейной зависимости (рис.1.6). Sп =n·a·L (n - число направлений развития пожара, a - ширина площади пожара (здания, помещения).L

Рис. 1.1.Форма площади пожара при k = 1

Рис. 1.2.Форма площади пожара при k = 0,5

Рис.1.3.Форма площади пожара при k = 0,25

Рис. 1.4.Форма площади пожара при достижении пламенем ограждающих стен здания (границ горючей нагрузки)

2223516728947Задача 1.1. Определить площадь, периметр и фронт пожара на 25-й мин его развития, если Vл = 1м/мин, τсв.р = 17 мин (схема объекта и место очага горения представлены на рис.1.5).

Рис.1.5.Схема объекта и место очага горения.

Задача 1.2. Определить время свободного развития пожара τсв.р, если на момент введения первого ствола площадь пожара составила Sп =

250 м², линейная скорость распространения пламени составляет Vл = 0,8 м/мин. Пожар возник на открытом пространстве (схема объекта и место очага горения показаны на рис.1.6).

Рис.1.6.Схема объекта и место очага горения.

Задача 1.3. Определить время до сообщения о пожаре, если площадь пожара на момент прибытия первого пожарного подразделения Sп = 200м², время следования ∆τсл = 5 мин, линейная скорость распространения

Пламени Vл = 0,9 м/мин (схема объекта и место очага горения показаны на рис.1.7).

Рис. 1.7.Схема объекта и место очага горения.

Задача 1.4. Определить линейную скорость распространения пламени, если площадь пожара на 25-й мин Sп = 250 м², первый ствол на тушение пожара был подан на 20-й мин (схема объекта и место очага горения показаны на рис.1.8).

Рис.1.8.Схема объекта и место очага горения.

Задача 1.5. Определить скорость роста площади пожара на 23-й мин его развития, если Vл = 0,8 м/мин, время свободного развития пожара τсв.р2452116262493= 18 мин (схема объекта и место очага горения показаны на рис.1.9).

Рис. 1.9.Схема объекта и место очага горения.

22235161149607Задача 1.6. Определить линейную скорость распространения пламени Vл, если площадь пожара на 30-й мин его развития Sп = 400м², а скорость роста площади пожара VSп = 10 м²/мин, первый ствол на тушение пожара был введен на 20-й мин (схема объекта и место очага пожара показаны на рис.1.10).

Рис. 1.10.Схема объекта и место очага горения.

Задача 1.7. Определить площадь, периметр и фронт пожара на момент сообщения диспетчеру пожарной охраны, введения первого ствола и его локализации, если площадь пожара к прибытию первого подразделения в 21.30 Sп = 250 м², а скорость роста площади пожара VSп = 25 м²/мин. Время сообщения о пожаре 21.23, время локализации 21.55. Продолжительность боевого развёртывания ∆τб.р = 2 мин. Построить график роста площади пожара во времени (схема объекта и место возникновения очага горения показаны на рис.1.11).

Рис.1.11.Схема объекта и место очага горения.

Задача 1.8. На момент прибытия первого подразделения на пожар площадь пожара составляла Sп. За время проведения боевого развёртывания площадь пожара увеличилась на K ,% . Определить:

Площадь пожара на 10-й мин его развития;

Площадь пожара на момент локализации. Построить график роста площади пожара во времени.

Локализация пожара наступила после введения стволов последним подразделением, прибывшим на пожар по 2-му номеру вызова.

Повышенный номер вызова был объявлен первым РТП сразу, после прибытия на пожар (вариант расположения очага горения, время боевого развёртывания τб.р, площадь пожара Sп, K,% и вариант расписания выездов приведены в табл.1, размеры здания и место очага - на рис.1.12).

Рис. 1.12.Схема объекта и место очага горения.

Таблица 1.1

Номер варианта Место очага Площадь пожара Sп, м² Время боевого развёртыван ияτб.р, мин K, % Вариант расписания выездов

2 II 200 3,5 40 2

3 III 100 2 30 3

4 IV 150 2 30 4

5 V 140 3,5 40 5

7 II 180 2,5 30 7

8 III 120 2 30 8

9 IV 160 3 50 9

10 V 130 2 30 10

11 I 400 3,5 50 1

12 II 160 2 30 2

13 III 130 3,5 40 3

14 IV 170 2 30 4

15 V 120 2,5 40 5

16 I 330 3 40 6

17 II 150 2,5 40 7

18 III 140 2,5 30 8

19 IV 180 3,5 40 9

20 V 110 3,5 50 10

21 I 370 2 30 1

22 II 170 2,5 40 2

23 III 110 2 30 3

24 IV 190 3,5 40 4

25 V 100 2 30 5

26 I 420 3,5 50 6

27 II 190 2 30 7

28 III 130 2 30 8

29 IV 120 3,5 50 9

30 V 200 2 30 10

Расчёт параметров тушения пожара

К параметрам тушения пожара относятся:

Площадь тушения Sт, м 2 ;требуемая Iтр и фактическая интенсивность подачи огнетушащих веществ Iф, л/с. м2;

Требуемый Qтр и фактический Qф расход огнетушащих веществ, л/с;

Требуемыйтрвеществ, л/м2;

И фактический

Ф удельный расход огнетушащихчисло направлений ввода приборов тушения, шт;

Скорость тушения площади пожара Vт, м2/мин; продолжительность

Ликвидации горения,

т, мин.

Для прекращения распространения огня по фронту пожара следует подавать огнетушащие вещества с определенной интенсивностью I. При этом должно выполняться неравенство

Iф > Iт;(2.1)

Значения требуемой (нормативной) интенсивность приведены в Приложении 4 или НПБ 201-96.

Для реализации условия (2.1) необходимо, чтобы фактический расход огнетушащих веществ из введённых для ликвидации горения стволов превышал расчётное (требуемое на тушение) значение расхода, т.е.

Qф > Qтр;(2.3)

Фактический расход определяется по формуле

Qф   ni qств i ;(2.4)

Где:ni-числоi-хстволов;q ств i

Расходсi-гоствола

(характеристики приведены в Приложении 5); m - число типов стволов.

Требуемыйрасходравенпроизведениюплощадитушениянатребуемую интенсивность:

Qтр  S т  I тр

Для достижения условий локализации также необходимо, чтобы число боевых позиций ствольщиков соответствовало требуемому, т.е., расстояние между ними должно быть расчётным.

Площадь тушения - это часть площади (или вся площадь) пожара в направлении распространения огня, на которую реально может быть подано огнетушащее вещество. В общем случае площадь тушения (рис.2.1) можно определить по формуле

S т  Фп hт;(2.6)

Где: Фп - линейный параметр пожара, со стороны которого возможна подача огнетушащего вещества (фронт), м; hт - глубина тушения стволов (для ручных hт = 5 м; для лафетных hт = 10 м; для мониторов и водяных пушек hт = 15 м).

При определении S т для круговой формы развития пожара (рис. 2.2) необходимо учитывать изменение длины окружности от внешней границы пожара к очагу горения. Поэтому для круговой формы

ПS  k    L2  k    L

S т  k  Рп

 hт k    h2 ;(2.7)

Где: k - коэффициент, учитывающий угол в направлении развития пожара. Если подача огнетушащих веществ осуществляется по всему периметру пожара (рис.2.3), то площадь тушения определяется по формуле

S т  S п   Lп  hт  ;(2.8)

Периметр тушения определяется, исходя из величины периметра пожара, числа направлений введения стволов и глубины тушения этими стволами.

Если для тушения пожара используются ручные и лафетные стволы, то для определения площади тушения необходимо разбить фронт (или периметр) пожара на участки, на которых работают ручные или лафетные стволы. При этом необходимо учитывать фактический периметр тушения стволом

Qствф тI нhтПлощадь тушения будет определяться как сумма площадей тушения

Для участков, на которых, соответственно, работают ручные и лафетные стволы

S т  S т. р  S т. л;(2.10)

Где: S т.р и S т.л - площади тушения для ручных и лафетных стволов, определяются в зависимости от формы площади пожара, направлений его развития и введения стволов по формулам (2.4), (2.5), (2.6), (2.8).

Для ликвидации горения на участке площади пожара

Соблюдении условия (2.1) необходимо подать определённое количество

Огнетушащего вещества

W отв. Необходимое для прекращения горения

Количество огнетушащего вещества, подаваемое на единицу площади пожара, называется удельным расходом

Q W отв;(2.11)

S пУмножим числитель и знаменатель в формуле (2.11) на время

Прекращения горения 

С учётом того, что I 

W о т в

 S п

Формулу (2.11) можно представить в виде

 S п  

 I   ;(2.13)

Фактический удельный расход показывает, сколько огнетушащего вещества было подано за все время ликвидации горения на единицу площади пожара:

Qуд ;(2.14)

Локппгде:S лок- площадь пожара на момент локализации, м2;

Количество огнетушащего вещества, поданное для ликвидации горения;

W отв  qi  р i ;(2.15)

Где:  рi - время работы i-го ствола; n - число стволов.

Динамика уменьшения площади пожара с момента его локализации до ликвидации характеризуется скоростью тушения пожара

Или V т 

Где: S п1 - площадь пожара на момент времени 1

; S п2 - площадь

Пожара на момент времени 2

;  S п- уменьшение площади пожара завремя .

Если числитель и знаменатель в формуле (2.16) умножить на необходимую для прекращения горения интенсивность подачи огнетушащих веществ, то формула определения скорости тушения примет вид:

V т   SпI н;(2.17)

Или V т ;(2.18)

Продолжительность ликвидации горения - это временной промежуток от момента введения первого ствола на тушение до полного прекращения горения. Продолжительность ликвидации горения складывается из двух характерных временных интервалов - продолжительности локализации пожара ( лок) и продолжительности ликвидации пожара ( лик).

Продолжительность локализации пожара - временной промежуток от момента введения первого ствола до наступления момента локализации пожара.

Продолжительность ликвидации пожара - временной промежуток от локализации пожара до момента полного прекращения горения.

Если задаться условием, при котором скорость тушения пожара - величина неизменная (V т = const), то время ликвидации пожара можно будет определить по формуле

 лик 

 лик 

S лок q Qн

Рис. 2.1. Схема определения площади тушения при прямоугольной форме развития пожара: а) с одного направления; б) с двух направлений.

Рис.2.2. Схема площади тушения пожара: а) при круговой форме его развития, б) при смешанной форме (круговая и прямоугольная).

1234439243212вгд

Рис. 2.3. Схема площади тушения пожара при подаче огнетушащих веществ по направлениям: а) n = 4; б) n = 3; в)n = 2; г)n = 2; д) n = 1.

Задача 2.1. Определить площадь тушения и расход воды для тушения пожара: а) ручными и б) лафетными стволами на 25-й мин развития пожара. Известно, что линейная скорость распространения пламени V л = 0,8 м/мин, нормативная интенсивность I н = 0,15 л/с·м2. (схема объекта и место очага пожара показаны на рис. 2.4).

Рис. 2.4.Схема объекта и место очага горения.

Задача 2.2. Определить необходимый расход воды для локализации пожара и тушения по его периметру: а) ручными и б) лафетными стволами. Площадь пожара на открытом складе хранения ТГМ составляет S п =

500м2. Нормативная интенсивность составляет I н = 0,2 объекта и место очага пожара показаны на рис. 2.5).

Рис.2.5.Схема объекта и место очага горения.

Задача 2.3. Определить возможность локализации пожара, площадь которого составляет S п = 450 м2 (схема объекта и место очага горения показаны на рис. 2.6), если на его тушение введены стволы РС-70, РС-70 (d н = 25мм), ПЛС-П20 (d н = 28мм). Нормативная интенсивность I н =

Рис. 2.6.Схема объекта и место очага горения.

Задача 2.4. Определить расход воды и направления введения стволов для локализации пожара (схема объекта и место очага горения показаны на рис. 2.7), если известно, что площадь пожара на момент сообщения о нём диспетчеру составляла S п = 40 м2, время следования первого

Подразделения

сл = 5 мин. На тушение пожара были введены РС-70

(б. р =2мин),дваРС-70(d н =25мм,б. р =3мин).Нормативная

Интенсивность I н = 0,15

Л с м2 , линейная скорость V л = 0,9 м/мин (схема

Объекта и место очага пожара показаны на рис.2.7).

Рис. 2.7.Схема объекта и место очага горения.

Задача 2.5. Определить направления и очередность введения стволов для локализации пожара на минимальной площади. На тушение пожара в здании промышленного предприятия было подано 5 стволов (два РС-50, два РС-70 (d н = 25мм) и РС-70) силами двух караулов. Первый караул прибыл к месту пожара в 18 ч 00 мин, площадь пожара составила S п = 400

М2, первый ствол был введен в 18 ч 02 мин, еще два ствола в 18 ч 04 мин.

Пожар был локализован в 18 ч 12 мин после введения двух стволов вторым караулом, который прибыл в 18 ч 10 мин. Нормативная интенсивность I н =

Л с м2 , линейная скорость распространения пламени V л = 0,9 м/мин

(схема объекта и место очага пожара показаны на рис.2.8).

Рис. 2.8.Схема объекта и место очага горения.

Построение совмещённого графика изменения площади пожара, требуемого и фактического расходов огнетушащих веществ.

Совмещённый график связывает основные геометрические параметры развития и тушения пожара (площадь пожара, площадь тушения) с необходимым расходом огнетушащих веществ, описывает динамику наращивания фактического расхода огнетушащих веществ, показывает продолжительность основных этапов развития и тушения пожара (время свободного развития пожара, продолжительность локализации и ликвидации пожара).

Методика построения совмещённого графика изложена в инструкции (4). График строится в декартовой системе координат. По оси ординат откладывается слева - площадь пожара или тушения, м2; справа - расход огнетушащего вещества, л/с.

Соответствие между площадью и расходом достигается умножением значений площади на требуемую интенсивность подачи огнетушащих веществ.

По оси абсцисс откладывается астрономическое время в часах (или в часах и минутах). В точке начала координат указывается предполагаемое время возникновения пожара.

Если подача огнетушащих веществ осуществляется по всей площади пожара, то на графике показываются две зависимости (рис.3.1): изменение во времени площади пожара (требуемого расхода) (кривая 1) и фактического расхода (ломаная 2).

Рис. 3.1.Совмещённый график (подача огнетушащих веществ по площади пожара)

Если огнетушащими веществами возможно обработать только часть площади пожара (площадь тушения), то на графике необходимо представить три зависимости (рис.3.2): изменение площади пожара во

S п  f 

(кривая1),изменениеплощадитушенияили

Требуемого на тушение расхода во времени

S т Q

 (кривая 2, прит ркруговой форме развития пожара - пунктирная линия)и изменение

Фактического расхода во времени Qф  f () (ломаная 3).

Рис. 3.2. Совмещённый график (подача огнетушащих веществ по площади тушения): возн - время возникновения пожара; вв1 - время введения первого ствола; лок - время локализации пожара; лик - время ликвидации

Соответственнотребуемый,

Фактическийрасходнамоментлокализации;

Лок п-соответственноплощадьтушения,

Площадь пожара на момент локализации;  т уш- время тушения пожара.

Задача 3.1. Построить совмещённый график, показать направления введения стволов (схема объекта, место очага горения, рис.3.3). Определить фактический удельный расход воды, поданный на тушение

Пожара qф

Известно, что пожар произошёл на открытом складе хранения

ТГМ, площадь пожара на момент введения первого ствола S п = 150 м2. Линейная скорость распространения пламени V л = 1,0 м/мин, нормативная

Интенсивность I н = 0,2 л (с м2) .

Время введения стволов: РС-70 – 18 ч 05 мин; РС-70, РС-70 (d н = =25мм) – 18 ч 08 мин; РС-70, РС-70 (d н = 25мм) – 18 ч 15 мин; ПЛС - П20 (d н =

28мм) – 18 ч 18 мин; РС-70 (d н = 25мм) – 18 ч 20 мин. Продолжительность ликвидации пожара составила 25 мин.

Рис. 3.3.Схема объекта и место очага горения.

Задача 3.2. Построить совмещённый график, показать направления введения стволов на момент локализации пожара (схема объекта, место очага горения даны на рис. 3.4). Известно, что площадь пожара на момент введения первого ствола составила S п = 300 м2, а на момент локализации

S п = 750 м2, нормативная интенсивность I н = 0,1 л (с м2) .

Время введения стволов: РС-50 – 19 ч 10 мин; РС-70 – 19 ч 12 мин; РС-70 – 19 ч 13 мин; РС-70 – 19 ч 19 мин; РС-70 – 19 ч 21 мин.

Фактическийудельныйрасходнатушениепожарасоставилqф =

Рис. 3.4.Схема объекта и место очага горения.

Задача 3.3. Построить совмещённый график, показать направления введения стволов (схема объекта, место очага горения представлены на рис. 3.5), определить фактический удельный расход воды, поданной науд

Тушениепожараqф

Известно,чтоплощадьпожаранамомент

Локализациипожара21ч20минS п =900м2,линейнаяскорость распространения пламени V л = 0,9 м/мин, требуемый расход воды на

ЛоктрмоментлокализацииQт р =43л/с,требуемыйудельныйрасходqуд =

М2 . На тушение пожара были поданы два РС-70 (d н = 25мм), два РС-

1005839872723365760050696370 и ПЛС - П20 (d н = 32мм), динамика введения стволов показана на рис. 3.6.

Рис.3.5.Рис.3.6.

Задача 3.4. Пожар произошёл в корпусе по изготовлению продукции из древесины. Сообщение о пожаре поступило диспетчеру в 18 ч 20 мин. К моменту прибытия на пожар первого караула площадь пожара S п. Первый РТП по внешним признакам объявил 3-й номер вызова. Время боевогоразвёртыванияпервогокараула

 б. р. =4мин,времябоевогоразвёртывания последующих подразделений

 б. р. = 3 мин. Тушение

Осуществлялось звеньями ГДЗ, использовались стволы РС-70 (d н =19; 25 мм).

Определитьудельныйфактическийрасходqф

Фактическую

Интенсивность подачи воды на момент локализации, продолжительность локализации и ликвидации пожара. Построить совмещённый график изменения площади пожара, необходимого и фактического расходов огнетушащих веществ. Схема объекта и место очага горения даны на рис.

17373606082073.7. ЗначенияS п,V л,I н,qуд, вариант расписания выездов и места возникновения пожара определить из табл. 3.1.

Рис. 3.7.Схема объекта и место очага горения.

Таблица 3.1

Номер варианта S п, м2 V л, V л

М/мин I н, л/(с. м2) qуд, л/м2 Вариант расписания выездов Место очага

1 450 1,1 0,2 150 1 I

2 430 1,1 0,2 170 2 II

3 250 0,9 0,22 190 3 III

4 500 1,1 0,2 210 4 IV

5 520 1,2 0,2 230 5 V

6 240 0,8 0,25 250 6 VI

7 260 0,9 0,22 150 7 VII

8 480 1,2 0,25 170 8 VIII

9 310 1,1 0,25 190 9 IX

10 400 1,2 0,2 210 10 X

11 480 1,2 0,25 230 1 I

12 460 1,2 0,2 250 2 II

13 280 0,8 0,25 150 3 III

14 530 1,0 0,2 170 4 IV

15 550 1,0 0,2 190 5 V

16 260 0,9 0,22 210 6 VI

17 280 0,8 0,25 230 7 VII

18 440 1,2 0,25 250 8 VIII

19 370 1,1 0,25 150 9 IX

20 520 1,1 0,2 170 10 X

21 380 1,2 0,25 190 1 I

22 490 1,1 0,2 210 2 II

23 300 0,8 0,25 230 3 III

24 560 1,1 0,2 250 4 IV

25 580 1,0 0,2 150 5 V

26 290 0,8 0,25 170 6 VI

27 290 0,9 0,22 190 7 VII

28 460 1,0 0,25 210 8 VIII

29 410 1,1 0,25 230 9 IX

30 300 1,3 0,25 250 10 X

Литература

Боевой устав пожарной охраны. МВД России (с учётом изменений и дополнений согласно приказу МВД России от 06.05.2000, № 477), 1995.

НПБ 201-96: “Пожарная охрана предприятий. Общие требования”.

Наставление по пожарно-строевой подготовке. Нормативы по ПСП. - Ярославль, 1974.

Инструкция по изучению пожаров. - М., 1986.

Таблица интенсивности подачи огнетушащих веществ при тушении пожаров передвижной техникой. Инф. письмо ГУПО МВД СССР. – М., 1982.

Нормы положенности пожарного оборудования на пожарные автомобили основного назначения. - М., 1993.

Методика подготовки нормативов по пожарно-строевой подготовке. - М.: ГУПО, 1989. – 22 c.

НПБ 163-97: “Пожарная техника. Основные пожарные автомобили. Общие технические требования. Методы испытаний”.

Приложение 1.

Линейная скорость распространения горения на различных объектах

Объекты, материалы Скорость распространения горения, м/мин

Административные здания 1,0-1,5

Библиотеки, книгохранилища, архивохранилища 0,5-1,0

Деревообрабатывающие предприятия: лесопильные цехи (здания I, II, Ш ст. огнестойкости) 1,0-3,0

Лесопильные цехи (здания IV и V ст.огнестойкости) 2,0-5,0

Сушилки 2,0-2,5

Заготовительные цехи 1,0-1,5

Производства фанеры 0,8-1,5

Помещения других цехов 0,8-1,0

Жилые дома 0,5-0,8

Кабельные сооружения (горение кабелей) 0,8-1,1

Коридоры и галереи 4,0-5,0

Лесные массивы (скорость ветра 7-10 м/с ивлажность 40%): рада-сосняк сфагновыйдо 1,4

Ельник- долгомошник и зеленомошникдо 4,2

Сосняк - зеленомошник (ягодник) до 14,2

Сосняк-бор-беломошникдо 18,0

Морские и речные суда

Сгораемая надстройка при внутреннем пожаре

Сгораемая надстройка при наружном пожаре

Внутренние пожары при наличии синтетической отделки и открытых проемов 1,2-2,7

Музеи и выставки 1,0-1,5

Научные учреждения 0,5-0,8

Объекты транспорта: гаражи, трамвайные и троллейбусные депо 0,5-1,0

Ремонтные залы ангаров 1,0-1,5

Пенополиуретан0,7-0,9

Предприятия здравоохранения, здания I-III ст. огнестойкости 0,6-1,0

Предприятия текстильной промышленности помещения текстильного производства 0,5-1,0

То же, при наличии на конструкциях слоя пыли 1,0-2,0

Волокнистые материалы во взрыхлённомсостоянии7,0-8,0

Растительность, лесная подстилка, подрост, древостой по кромке на флангах и в тылу прискорости ветра, м/с: 8-9 4-7

Растительность, лесная подстилка, подрост, древостой при верховых пожарах и скорости, м/с: 8-9 до 42

Сгораемые конструкции крыш и чердаков 1,5-2,0

Сгораемые покрытия цехов большой площади 7-3,2

Сельские населенные пункты:

Жилая зона при плотной застройке зданиями V степени огнестойкости, сухой погоде и сильном ветре

Соломенные крыши зданий подстилка в животноводческих

Помещениях20-25

Склады лесопиломатериалов: круглого леса в штабелях

Пиломатериалов (досок) в штабелях при влажности, %:до 16

Куч балансовой древесины при влажности,

Более 40 0,4-1,0

Склады: торфа в штабелях 0,8-1,0

Льноволокна 3,0-5,6

Текстильных изделий 0,3-0,4

Бумаги в рулонах 0,2-0,3

Резинотехнических изделий в зданиях 0,4-1,0

Резинотехнических изделий (штабеля на1,0-1,2

Открытой площадке) каучука 0,6-1,0

Лаков, красок, растворителей 0,6-1,0

Сушильные отделения кож заводов 1,5-2,2

Театры и дворцы культуры (сцены) 1,0-3,0

Типографии 0,5-0,8

Торговые предприятия, склады и базы товароматериальных ценностей 0,5-1,2

Фрезерный торф (на полях добычи) прискорости ветра м/с: 10-14 8,0-10

Холодильники 0,5-0,7

Школы, учебные учреждения: здания I и II ст. огнестойкости 0,6-1,0

Здания III и IV ст. огнестойкости 2,0-3,0

Приложение 2.

Некоторые виды выполняемых работ на пожаре

Виды выполняемых работ Необходимое количество, л/с, чел. Время

На выполнение работ, мин.

Прокладка одной рукавной линии диаметром 66 или 77мм: из скаток на расстояние 100 м 2 2,5-3

Из скаток на расстояние 160 м 2 5

Из скаток на расстояние 240 м 3 6

Из гармошки или катушки на расстояние 100 м 2 2

Из гармошки или с рукавной катушки на 100 м 2 4

Прокладка одной рукавной линии диаметром 89 мм: из скаток на расстояние 100 м 2 4-5

Изгармошкиилисрукавнойкатушкина2 2

Расстояние 100 м из гармошки или с рукавной катушки на 100 м 2 5-6

Сбор и выезд по тревоге дежурного караула с посадкой в автомобиль за воротами гаража 13-15 1

Прием,обработкасообщенияопожареи высылка подразделений по адресу 1 1-2

Установка пожарного автомобиля (АЦ, АН) на водоём с присоединением всасывающей линии и забором воды 2 2-3

Установка пожарной насосной станции на водоём с присоединением всасывающей линии с забором воды 3 4-5

Установка автоцистерны на гидрант с подачей 6

ОдногоРС-70иодногоРС-50черезразветвление (при длине рабочих линий на дварукава каждая) и длине магистральной линии (d =66 мм или d=77 мм), м: 60-80 2

Установка автонасоса на водоём с подачей одного РС-70 и одного РС-50 через разветвление (при длине рабочих линий на два рукава каждая) и длине магистральной линии (d = 66 мм или d=77 мм), м:

Установка насосно-рукавного автомобиля на водоём с подачей двух ручных стволов через разветвление (при длине рабочих линий на два рукава каждая и длине магистральной линии (d= 66 мм или d=77 мм), м: 100-120200-220

Установка автоцистерны на водоём с подачей лафетного ствола на расстояние, м:

Установка автонасоса на водоём с подачей лафетного ствола на расстояние, м:

Сборка, установка пеноподъёмника с двумя ГПС-600 при длине магистральной линии, м: 60-80

Приложение 3.

Затраты времени на боевое развёртывание расчёта из 3 человек

«отлично» зимой «Удовлетворите льно» летом,

«хорошо» зимой «Удовлетвори тельно» зимой

20 0,4 0,46 0,52 0,56

40 0,83 0,92 1,0 1,1

60 1,38 1,46 1,55 1,63

80 1,95 2,05 2,15 2,15

100 2,5 2,65 2,8 2,98

120 2,96 3,12 3,2 3,4

140 3,8 3,95 4,1 4,25

160 4,42 4,56 4,72 4,86

180 5,05 5,22 5,40 5,55

200 5,72 5,88 7,26 6,22

Затраты времени на боевое развёртывание расчёта из 4 человек

Длина магистральной линии Норма времени, мин

«Отлично» летом «Хорошо» летом,

«отлично» зимой «Удовлетвори- тельно»летом,

«хорошо» зимой «Удовле- творительно» зимой

20 0,35 0,4 0,45 0,5

40 0,58 0,65 0,72 0,8

60 0,96 1,03 1,1 1,16

80 1,36 1,45 1,53 1,62

100 1,75 1,85 1,95 2,05

120 2,6 2,35 2,45 2,55

140 2,83 2,93 3,03 3,13

160 3,38 3,48 3,58 3,68

180 4,0 4,15 4,28 4,42

200 4,72 4,85 4,98 5,12

Приложение 4.

Интенсивность подачи воды на тушение пожаров

1. Здания и сооружения л/(м2.с)

Административные здания: I-III степени огнестойкости 0,06

V степени огнестойкости 0,15

Подвальные помещения 0,10

Чердачные помещения 0,10

Ангары, гаражи, мастерские, трамвайные и троллейбусные депо 0,20

Больницы 0,10

Жилые дома и подсобные постройки: I-III степени огнестойкости 0,06

IV степени огнестойкости 0,10

V степени огнестойкости 0,15

Подвальные помещения 0,15

Чердачные помещения 0,15

Животноводческие здания: I-Ш степени огнестойкости 0,10

IV степени огнестойкости 0,15

V степени огнестойкости 0,20

Культурно-зрелищные учреждения (театры, кинотеатры, клубы,дворцы культуры): сцена 0,20

Зрительный зал 0,15

Подсобные помещения 0,15

Мельницы и элеваторы 0,14

Производственные здания:

IV степени огнестойкости IV-V степени огнестойкости окрасочные цехи подвальные помещения чердачные помещения

Сгораемые покрытия больших площадей в производственных зданиях:

При тушении снизу внутри здания

При тушении снаружи со стороны покрытия при тушении снаружи при развившемся пожаре 0,15

Строящиеся здания 0,10

Торговые предприятия и склады товарно-материальных ценностей 0,20

Холодильники 0,10

Электростанции и подстанции: кабельные туннели и полуэтажи (подача тонкораспыленной0,20

Воды) машинные залы и котельные отделения 0,20

Галереи топливоподачи 0,10

Трансформаторы, реакторы, масляные выключатели (подача0,10

Тонкораспыленной воды) 2. Транспортные средства Автомобили, трамваи, троллейбусы на открытых стоянках 0,10

Самолёты и вертолёты: внутренняя отделка (при подаче тонкораспыленной воды) 0,08

Конструкции с наличием магниевых сплавов 0,25

Корпус 0,15

Суда (сухогрузные и пассажирские): надстройки (пожары внутренние и наружные) при подаче компактных и тонкораспылённых струй 0,20

Трюмы 0,20

3. Твёрдые материалы Бумага разрыхлённая 0,30

Древесина:

Балансовая при влажности, %: 40-50

Пиломатериалы в штабелях в пределах одной группы при влажности, %

Круглый лес в штабелях в пределах одной группы щепа в кучах с влажностью 30-50 % 0,20

Каучук (натуральный или искусственный), резина и резинотехнические изделия 0,30

Льнокостра в отвалах (подача тонкораспылённой воды) 0,20

Льнотреста (скирды, тюки) 0,25

Пластмассы: термопласты реактопласты

Полимерные материалы и изделия из них

Текстолит, карболит, отходы пластмасс, триацетатная плёнка 0,14

Торф на фрезерных полях влажностью 15-30 % (при удельном расходе воды 110-140 л/м и времени тушения 20 мин) 0,10

Хлопок и другие волокнистые материалы: открытые склады

Закрытые склады 0,20

Целлулоид и изделия из него 0,40

Ядохимикаты и удобрения 0,20

4 Легковоспламеняющиеся и горючие жидкости (при тушении тонкораспылённой водой) Ацетон 0,40

Нефтепродукты в емкостях с температурой вспышки ниже 28 °С28 -60 °Сболее 60 °С0,40

Горючая жидкость, разлившаяся на поверхности площадки, в траншеях и технологических лотках 0,20

Термоизоляция, пропитанная нефтепродуктами 0,20

Спирты (этиловый, метиловый, пропиловый, бутиловый и т.д.) на складах и спиртзаводах0,40

Нефть и конденсат вокруг скважины фонтана 0,20

Примечания:

При подаче воды со смачивателем интенсивность подачи по таблице снижается в 1,5- 2 раза.

Хлопок, другие волокнистые материалы и торф необходимо тушить только с добавлением смачивателей.

Приложение 5.

Тактико-технические характеристики водяных стволов

Тип ствола Диаметр насадка, ммРабочий напор, мРасход, л/сКРБ 13 35 3,5

ПЛС-П20 25 50 15(16,7)

ПЛС-П20 28 50 19(21,0)

ПЛС-П20 32 50 25(28,0)

ПЛС-П20 38 50 35(38,0)

ПЛС-П20 50 50 61(67,0)

Примечание: в скобках указаны расходы воды при рабочем напоре у насадка ствола 60 м.вод.ст.

Приложение 6.

Наименование частей, тип и количество прибывающей техники

Номер вызова Вариант задания

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

1 ПЧ-3 АЦ-2-40 (4331) АН-40 (433362) ПЧ-5 АЦ-2-40 (4331) АЦ-2,5-40 (433362) ПЧ-4 АЦ-2,5- 40(5301) АНР-40 (4331) СПЧ-1 АЦ-7-40 (4320) АЦ-2,5- 40(5301) ПЧ-2 АЦ-7-40 (4320) АН-40 (432732) ПЧ-2 АЦ-2-40 (4331) АЦ-2,5- 40(5301) ПЧ-3 АЦ-2-40 (4331) АЦ-2,5-40 (433362) ПЧ-11 АЦ-2-40 (4331) АЦ-7-40 (4320) ПЧ-14 АЦ-7-40 (4320) АНР-40 (4331) СПЧ-3 АЦ-7-40 (4320) АЦ-7-40 (4320)

2 ПЧ-2 АЦ-2-40 (4331) АЦ-2,5-40 (433362)

ПЧ-4 АЦ-2,5-40 (433362)

АЦ-2-40 (4331) СПЧ-6 АЦ-2,5-40 (433362) АСО- 12(66)90А СПЧ-1 АЦ-2-40 (4331) АЦ-7-40 (4320) АЛ-30 (131)Л21 ПЧ-7 АЦ-2-40 (4331) ППЧ-8 АЦ-2-40 (4331) СПЧ-3

АЦ-2,5-40 (433362) ПНС- 110(131) АР- 2(131)133 АСО- 12(66)90А ПЧ-1 АЦ-7-40 (4320) АЦ-2,5-40 (433362)

АСО- 12(66)90А СПЧ-1 АЦ-7-40 (4320) НПС- 110(131) ПЧ-5

АЦ-2-40 (4331) АЛ-30 (131)Л21 ПЧ-13 АЦ-2-40 (4331) АТ-3 (131)Т2ПЧ-3 АЦ-2,5- 40(5301) АЦ-2,5-40 (433362)

ПЧ-2 АЦ-7-40 (4320) ПНС- 110(131) АР-

ПЧ-4 АСО- 5(66)90А АЛ-30 (131)Л21 СПЧ-1 АЦ-2,5- 40(5301) АНР-40 (4331) ПЧ-1 АНР-40 (4331) АЛ-30 (131)Л21 АР- 2(131)133 ПЧ-3

АЦ-2,5-40 (433362) АТ-3 (131)Т2 АВ- 40(53215) СПЧ-1 АЦ-2,5- 40(5301) АЦ-7-40 (4320) ПЧ-1 АЦ-7-40 (4320) НПС- 110(131) АР-

ПЧ-3 АЦ-2-40 (4331) АСО-

5(66)90А АЛ-30 (131)Л21 ПЧ-6

АЦ-2-40 (4331) ПЧ-2 АЦ-2-40 (4331) АЦ-2,5-40 (433362)

ПЧ-4 АЦ-2,5-40 (433362)С

СПЧ-1 АЦ-2,5-40 (433362) АР- 2(131)133 АСО- 12(66)90А ПЧ-6

АЦ-2,5-40 (433362) АЛ-30 (131)Л21 ПЧ-2 АЦ-2-40 (4331) АЛ-30 (131)Л21 ПЧ-3 АЦ-2-40 (4331)

АЦ-2,5-40 (433362) АСО- 12(66)90А ПЧ-4

АЦ-2-40 (4331) ПНС- 110(131) АР- 2(131)133 ПЧ-12 АЦ-2-40 (4331) АЦ-2,5-40 (433362) АР- 2(131)133 ПЧ-9

АЦ-7-40 (4320) АВ- 40(53215) СПЧ-6 АНР-40 (4331) АЛ-30 (131)Л21 ППЧ-11 АЦ-2-40 (4331) СПЧ-2 АЦ-2-40 (4331) АЦ-7-40 (4320) АР- 2(131)133 ПЧ-3

АЦ-7-40 (4320) АСО- 12(66)90А ПЧ-5

АЦ-2,5- 40(5301) АЛ-30 (131)Л21 ПЧ-4 АЦ-2-40 (4331)

Окончание прил. 6

1 2 3 4 5 6 7 8 9 10 11

3 ПЧ-6 ПЧ ПЧ-3 ПЧ-5 СПЧ-2 СПЧ-2 ПЧ-5 ПЧ-1

АЦ-2,5-40 АЦ-2-40 АЦ-2,5- АЦ-2,5- АЦ-2-40 АЦ-2,5- АЦ-2,5- АЦ-7-40

(433362) (4331) 40(5301) 40(5301) (4331) 40(5301) 40(5301) (4320)

АЛ-30 АЦ-2,5-40 ПЧ-15 АВ- АВ- ППЧ-7 АВ- АВ-

(131)Л21 (433362) АЦ-2-40 40(53215) 40(53215) АЦ-30 40(53215) 40(53215)

СПЧ-1 ПЧ-2 (4331) ПЧ-16 ПЧ-4 (66)164 ППЧ-15 ПЧ-7

АЦС-40 АЦ-2,5-40 ПЧ-6 АЦ-2-40 АЦ-2-40 ПЧ-5 АЦ-2-40 АЦ-2,5-

(131)42Б (433362) АЦ-7-40 (4331) (4331) АЦ-2-40 (4331) 40(5301)

АЦ-2,5-40 АЛ-30 (4320) ПЧ-18 АЛ-30 (4331) ПЧ-6 СПЧ-1

(433362) (131)Л21 АВ- АЦ-2,5- (131)Л21 ПЧ-7 АНР-40 АЦ-2,5-

ППЧ завода ППЧ-6 40(53215) 40(5301) ПЧ-9 АЦ-2,5- (4331) 40(5301)

АЦ-30 АЦ-7-40 АТ3 АЦ-2-40 40(5301) ППЧ-13 АЛ-30

(66)146 (4320) ПЧ-19 (131)Т2(4331) АЦ-2,5- (131)Л22

ПЧ-5 АНР-40 ПЧ-6 ПЧ-7 40(5301) ПЧ-9

АЦ-2-40 (4331) АЦ-2-40 АЦ-2-40 АЦ-7-40

(4331) (4331) (4331) (4320)

ПЧ-7 АЛ-30 АНР-40 (131)Л21 (4331) 4 СПЧ-4 ПЧ-8 СПЧ-3 ПЧ-7 АЦ-2-40 АЦ-2-40 АЦ-40 АЦ-2-40 (4331) (4331) (133Г1)181 (4331) СПЧ-7 АВ- ПЧ-7 АЛ-30 АНР-40 40(53215) АЦ-2,5- (131)Л22 (4331) ПЧ-10 40(5301) ПЧ-8 ПЧ-10 АЦ-2-40 ППЧ-8 АЦ-40 АЦ-2-40 (4331) АЦ-30 (131)127 (4331) АТ-3 (53А)106Б АТ-3 АЛ-30 (131)Т2ПЧ-2 (131)Т2(131)Л22 ПЧ-12 АЦ-2-40 ПЧ-9 ПЧ-15 АЦ-7-40 (4331) АЦ-2-40 АЦ-2,5- (4320) (4331) 40(5301) АНР-40 ПЧ-10 (4331) 2

Приложение 7.

Время нахождения подразделений в пути, мин

Номер вызова 1 2 3 4 5 6 7 8 9 10 11

2.ПРОГНОЗИРОВАНИЕ ПОЖАРНОЙ ОБСТАНОВКИ.
Прогнозирование пожарной обстановки имеет ряд существенных методологических отличий от порядка прогнозирования химической и инженерной обстановки, обусловленных спецификой развития такого бедствия, каким является пожар.
Прогнозирование пожарной обстановки целесообразно осуществлять по методике последовательного определения основных показателей, характеризующих развитие пожаров.
1.Определение районов и участков опасных в отношении быстрого распространения огня.
При взрыве ГВС выделяют три основные зоны возможных пожаров :

  • зоны отдельных пожаров;
  • зоны сплошных пожаров;
  • зоны пожаров в завалах.

Зоны отдельных пожаров охватывают районы, в которых пожары возникают в отдельных зданиях и сооружениях. Пожары на территории рассредоточены. В этой зоне возможна быстрая организация тушения пожаров в течение до 20 минут после начала пожара.
Зоны сплошных пожаров могут возникнуть в зонах средних и сильных разрушений, когда пожары охватывают более чем 50% зданий в зоне в течении 1 – 2 часов. Далее возможно распространение огня на остальные здания и сооружения - огнем может быть охвачено до 90% строений и более.
В зонах сплошных пожаров невозможен проход или нахождение сил реагирования без проведения специальных противопожарных мероприятий по локализации и тушению пожаров.
Длительность сплошных пожаров может изменятся в широких пределах в зависимости от огнестойкости, плотности застройки и метеоусловий. Считается, что в кварталах (районах) значительной площади (более 2км2 и более) при застройке зданиями IY и Y степени огнестойкости, длительность сплошного пожара может составить 10 ч., а при застройке зданиями III степени- до 2-х суток.
Зоны пожаров в завалах распространяются на территорию части зоны сильных и всей зоны полных разрушений от взрыва ГВС.
Для этой зоны характерно сильное задымление и продолжительное горение в завалах, интенсивное выделение продуктов неполного сгорания и токсичных веществ. Значительное количество продуктов сгорания и теплового разложения, входящих в состав дыма обладают токсичностью. К ним относятся окись углерода углекислый и сернистый газы, хлор окислы азота,сероводород и другие.
Продолжительность горения и тления в завалах может составить несколько суток.
Особое место при прогнозировании пожарной обстановки занимает определение возможных районов образования огневых штормов.
Огневой шторм - это особый вид сплошного пожара. Огневой шторм возможен на больших площадях (более 2 км2) при компактной застройке. Из-за интенсивных конвективных потоков горячего воздуха на высоте до 5 км происходит активный приток свежего воздуха к центру шторма со скоростями порядка 10 – 15 м / сек (до 50 км \ час).
2.Определение скорости и направления распространения пожаров, времени его подхода к объекту (рубежу).
Направление распространения пожаров определяется преимущественным направлением ветра в приземном слое, а его скорость существенно влияет на скорость распространения пожаров.
Так, при скоростях ветра 3 - 5 м \ сек (10 – 20 км \ час) скорость распространения огня по ветру для зданий IY и Y степени огнестойкости может составлять 120 - 300 м \ час, а для зданий II и III степени – 60 – 120 м \ час, при скорости ветра 10 – 20 м \ сек (40 – 70 км \ час) скорость распространения огня увеличивается в 2 - 3 раза.
Следует отметить, что пожары распространяются не только в сторону ветра, но и в стороны перпендикулярные направлению ветра и даже навстречу ветру, причем скорость распространения огня против ветра всего лишь в 3 - 4 раза меньше, чем по ветру.
Время подхода фронта огня к заданному рубежу (объекту) определяется, исходя им прогнозируе мой скорости его распространения
3.Определение параметров развития пожаров.
Показатели, характеризующие развитие пожаров во времени от начала возникновения до полной ликвидации называется параметрами развития пожара.
В начальной стадии развития пожара происходит увеличение площади горения с выгоранием горючих материалов. Большинство пожаров на объектах с наличием твердой горючей основы характеризуется сравнительно медленным нарастанием температуры начальной стадии горения. Однако после достижения температуры равной 3000 С самовоспламеняются органические материалы и вещества и начинается стадия более интенсивного развития пожаров.
Ориентировочно можно считать, что время развития пожара в зданиях до его полного охвата огнем составляет:
-для зданий IY и Y степени огнестойкости - 30 - 60 мин.
-для зданий III степени огнестойкости, высотой до 2-х этажей – 1 ч., высотой до 5 этажей – 1 - 1,5 часа
-для зданий II степени огнестойкости,высотой 5этажей – 3 - 4часа.
для оценки обстановки и принятия решения на ликвидацию пожара большое значение имеет качественное прогнозирование развития параметров пожара. Одним из них является площадь горения (пожара), его периметр и скорость развития. Указанные параметры, в основном, определяют обстановку и лежат в основе расчёта сил и средств, необходимых для ликвидации пожаров.
В зависимости от расположения источника горения, конфигурации зданий и сооружений, метеоусловий различают три основных формы площади пожаров – круглая, угловая и прямоугольная. Для прогнозирования возможной площади пожара за основу берётся линейная скорость распространения горения.
Скорость распространения горения может меняться в широких пределах, в зависимости от назначения зданий, сооружений, конструкций. Ориентировочно она может составлять:

  • для административных зданий – 1 – 1,5 м. / мин.
  • для жилых домов – 0,5 – 0,8 м / мин.
  • для коридоров и галерей – 4 – 5 м / мин.
  • для торговых предприятий – 0,5 – 1,2 м / мин.
  • для школ и лечебных учреждений в зданиях I и II степени огнестойкости 0,6 – 1,0 м / мин., в зданиях III IY степени – 2,0 – 3,0 м / мин.

Площадь пожаров прогнозируется, как правило на момент прибытия основных сил противодействия и в дальнейшем уточняется.
Площади возможного развития прогнозируются и в дальнейшем уточняются
Площади возможного развития пожаров определяются по следующим зависимостям:

  • для круглой формы – Sп = П ´ R2
  • для угловой формы – Sп = 0,5 ´ a ´ R2
  • для прямоугольной формы – Sп = а ´ в, где

R - радиус развития горения на момент расчётов
a - угловой размер сектора горения в радианах
а,в - стороны прямоугольника при развитии пожара
3. Ориентировочный объём работ по локализации сплошных пожаров и необходимого количества сил и средств для их выполнения.
При расчёте сил и средств необходимо учитывать специфику горючей загрузки, вид пожара и сложившуюся обстановку.
Расчёт сил и средств может производится аналитическим методом, с использованием справочных таблиц, графиков и специальных линеек. В общем виде расчёт рекомендуется производить по следующей схеме:

  • Определение формы площади пожара, к моменту его локализации.
  • Определение принципа расстановки сил и средств для тушения пожара.
  • Определение площади тушения пожара.
  • Определение необходимого расхода огнетушащих средств на тушение пожара и защиту объектов, которым угрожает опасность.
  • Расчёт необходимого количества технических средств подачи огнетушащих средств для тушение пожара и защиты объектов.
  • Определение фактического расхода огнетушащих средств.
  • Расчёт необходимого запаса огнетушащих средств.
  • Определение необходимого количества пожарных машин основного назначения.
  • Определение предельных расстояний по подаче воды от пожарных машин, установленных на водоисточниках.
  • Определение численности личного состава, необходимого для тушения пожара и защиты населения и объектов.

Расчёты по приведенным методикам проводятся специалистами пожарных служб и подразделений, и закладывается в основу последующих мероприятий по ликвидации пожара.

Прогнозирование обстановке на
пожаре. Основные расчетные соотношения
1.
План лекции
Введение.
Прогнозирование обстановке на
пожаре. Ее цели и задачи.
2.
2. Основные расчётные
соотношения.

Прогноз последствий – это заблаговременный
прогноз обстановки на пожаре.
Под обстановкой на пожаре понимается
совокупность на определённый момент времени
данных о параметрах развития и тушения
пожара
Под оценкой и прогнозированием обстановки
понимается сбор и обработка исходных данных о
пожаре, определение размеров пожара и
нанесение их на карту (план), определение
влияния поражающих факторов.

Вопрос № 1 Прогнозирование и оценка
обстановки на пожаре
включает в себя:
1.Расчет динамики развития возможного
пожара.
2.Определение температурного режима на
пожаре, тепловых потоков.
3.Прогнозирование динамики задымления в
горящем и смежных помещениях, объёмах,
территории.
4. Прогнозирование зон загазованности,
масштабов возможных разрушений,
деформаций, проливов и т.д.

Прогнозирование проводится с целью:
1. Разработка активного варианта тушения пожара
2. Разработка и обоснование способов и приемов
проведения спасательных операций, ликвидаций
последствий аварийных ситуаций, пожаров, обеспечения
безопасности людей и материальных ценностей.
3. Разработка мер по обеспечению безопасных условий
ведения боевых действий, рассмотрение вопросов охраны
труда.
4. Разработка организационно-технических мер и
инженерных решений по совершенствованию
противопожарной защиты объекта дипломного
проектирования, организации подготовки и повышения
уровня боеготовности и боеспособности пожарных
подразделений, охраняющих данный объект, а также
подразделений пожарной охраны и пожарноспасательных служб региона, города

Вопрос №2. Основные расчётные соотношения
1.)При решении пожарно – тактикческих
задач используют следующие параметры
развития пожара
линейная скорость распространения горения, Vл
(м/мин.);
Время свободного развития, св (мин)
путь, пройденный огнем, L, (м);
площадь пожара, Sп, (м2);
периметр пожара, Pп, (м);
фронт пожара. Фп, (м);
скорость роста площади пожара, Vs, (м2/мин.);
скорость роста периметра пожара,Vр,. (м/мин.);
скорость роста фронта пожара, Vф, (м/мин.).

1.1)Линейная скорость распространения горения
представляет собой физическую величину,
характеризуемую поступательным движением фронта
пламени в данном направлении в единицу времени (м/с).
Она зависит от вида и природы горючих веществ и
материалов, от начальной температуры, способности
горючего к воспламенению, интенсивности газообмена на
пожаре, плотности теплового потока на поверхности
веществ и материалов и других факторов.
Линейная скорость распространения горения характеризует
способность горючего материала к перемещению по своей
поверхности высокотемпературной зоны химических
превращений. Этот параметр зависит от многих факторов,
в частности от физикохимических свойств горючего
материала, его агрегатного состояния, условий тепло-,
массо- и газообмена на пожаре и т.п.

Линейная скорость распространения горения
определяется по по таблице (приложение №). При
определении размеров возможного пожара линейную
скорость распространения горения в первые 10 минут
от начала возникновения пожара необходимо
принимать половинной от табличного значения
(0,5Vл). После 10 минут и до момента введения
средств тушения в зону горения первым
подразделением, прибывшим на пожар, линейная
скорость при расчете берется равной табличной (Vл), а
с момента введения первых средств тушения (воды,
ВМП, ОПС и т.д.) до момента локализации пожара она
вновь принимается половинной от табличного
значения (0,5Vл).

1.2). Определение времени свободного
развития горения.
Время свободного развития пожара - временной
промежуток от момента возникновения пожара до
начала его тушения.
св.= д.с.+ сб.+ сл.+ б.р. , [мин.],
Где:
сб.=1,5 - 2 мин. – время сбора личного состава по
тревоге;
б.р. = время, затраченное на проведение боевого
развертывания (в пределах 6--8 минут).
д.с = в практических расчётах время до сообщения
о пожаре принимается в пределах 8-12 минут.

сл. = время следования первого подразделения от
ПЧ до места вызова, берется из расписания
выездов пожарных подразделений, также сл.
можно определить по формуле:
сл.=,
[мин.],
L – длина пути следования подразделения от
пожарного депо до места пожара, [км];
Vсл. - средняя скорость движения пожарных
автомобилей, [км/ч] (при расчетах можно
принимать: на широких улицах с твердым
покрытием 45 км/ч, а на сложных участках, при
интенсивном движении и грунтовых дорогах 25
км/ч).

1.3).Определение пути, пройденного огнём.
Путь, пройденный огнём, определяется по формуле в
зависимости от времени до сообщения о пожаре на ЦУС.
Путь, пройденный огнем, от места возникновения
пожара является изменяющейся величиной, зависит от
линейной скорости распространения горения и периода
распространения горения. В зависимости от времени,
путь, пройденный огнем, можно определить по одной из
формул:
если св. 10 минут:
L=0,5Vл св. , [м];
если св.>10 минут:
L=0,5Vл 1+Vл 2=0,5Vл10+Vл 2=5Vл+Vл 2 , [м],
где:
1=10 минут;
2= св.- 1= св -10, [мин.]

1.4).Определение формы площади пожара.
В зависимости от места возникновения пожара,
геометрических размеров помещения или здания,
наличия противопожарных преград, пути, пройденного
огнём, площадь пожара может приобретать различные
формы: круговую, угловую, прямоугольную. Деление
форм площади пожара на три вида является условным и
применяется для упрощения практических расчётов.
На вычерченном плане этажа (участка, цеха, здания),
где произошел условный пожар, наносится длина пути
распространения горения [L] на заданный момент
времени (в масштабе), определяется и условнографически обозначается форма площади пожара. В
данном пункте записывается форма площади пожара.

1.3).Определение площади пожара.
Площадь пожара – это площадь проекции поверхности
горения твёрдых и жидких веществ и материалов на
поверхность земли или пола помещения.
КРУГОВАЯ форма площади
пожара встречается при
возникновении горения в
геометрическом центре
помещения или в глубине
большого участка с пожарной
нагрузкой, если скорость его
распространения во всех
направлениях при безветренной
погоде приблизительно
одинакова, (Рис.1а).
Sп =k× L2 , [м2].
K= 1

УГЛОВАЯ форма характерна для пожара, который
возникает на границе большого участка с пожарной
нагрузкой и распространяется внутри сектора. Она
может иметь место на тех же объектах, что и круговая.
Максимальный угол сектора зависит от геометрической
конфигурации участка с пожарной нагрузкой и от места
возникновения горения. Чаще всего эта форма
встречается на участках с углом 90 и 180 градусов.
УГЛОВАЯ 180o,
(Рис.1б):
Sп = k× L2,
[м2 ].
K= 0,5

УГЛОВАЯ 90o,
(Рис.1в):
Sп = k× L2 [м2].
K= 0,25

ПРЯМОУГОЛЬНАЯ форма площади пожара
встречается, когда горение возникает на
границе или в глубине длинного участка с
пожарной нагрузкой (длинные здания любого
назначения и другие участки с пожарной
нагрузкой небольшой ширины) и
распространяется в одном или нескольких
направлениях: по ветру – с большей, против
ветра – с меньшей, а при относительно
безветренной погоде примерно с одинаковой
линейной скоростью.
Пожары в зданиях с небольшими
помещениями имеют прямоугольную форму,
(Рис.1г;Рис.1д).
Sп =anL, [м2 ], где:
a – ширина помещения (здания), [м];
n – число сторон распространения горения
(чаще всего «n» равно единице или двум).

В процессе развития пожара его форма может изменяться.
Так, начальная круговая или угловая форма площади
пожара через определенный промежуток времени (по
достижении горения ограждающих конструкций) перейдет
в прямоугольную:
из круговой и угловой 180 гр. перейдет в прямоугольную,
при условии: 2L a;
из угловой 90 гр.: L a.
В итоге, если пожар будет и дальше распространяться, он
примет форму данного геометрического участка. При
прямоугольной форме помещения (здания) площадь
пожара в данном случае будет равна площади этого
помещения (здания):
Sп = аb, [м2], где:
b – длина помещения (здания), [м].



зависимости (рис. 1.4)

Если пожар имеет прямоугольную форму, то
площадь пожара увеличивается по линейной
зависимости (рис. 1.6)

При горении нефти и нефтепродуктов в
резервуарах форма площади пожара
соответствует правильной геометрической
фигуре емкости (кругу или прямоугольнику), а
при разлитой жидкости – ее площади.
Форма площади развивающегося пожара
является основой для определения расчётной
схемы, направлений сосредоточения и введения
сил и средств тушения, а также потребного их
количества для осуществления боевых действий.

1.5).Определение периметра пожара.
Периметр пожара (Рп) – это длина внешней границы
площади пожара. Данная величина имеет важное
значение для оценки обстановки на пожарах,
развившихся до крупных размеров, когда сил и средств
для тушения по всей площади в данный момент
времени недостаточно. Периметр пожара определяется
по формуле, в зависимости от формы площади пожара:
круговая: Рп = 2 L, [м];
угловая 180o: Рп = L + 2L , [м];
угловая 90o: Рп = (L)/2 + 2L , [м];
прямоугольная с дальнейшим распространением
пожара: Рп = 2(a+nL) , [м];
прямоугольная без распространения пожара:
Рп = 2(a+b) , [м].

1.6).Определение фронта пожара.
Фронт пожара (Фп) -- часть периметра пожара, в
направлении которой происходит распространение горения.
Данный параметр имеет особое значение для оценки
обстановки на пожаре, определения решающего направления
боевых действий и расчета сил и средств на тушение любого
пожара. Фронт пожара определяется по формулам:
при круговой форме пожара:
Фп = 2 L , [м];
при угловой 180 форме пожара:
Фп = L , [м];
при угловой 90 форме пожара:
Фп = (L)/2 , [м];
при прямоугольной форме с дальнейшим распространением
пожара:
Фп = na , [м];
при прямоугольной форме без распространения пожара:
Фп = 0.

1.7).Определение скорости роста площади пожара.
Скорость роста площади пожара (Vs) определяется по
формуле:
Vs =
[м2/мин.],
где:
- время на каждый расчётный момент, [мин.].
1.8).Определение скорости роста периметра пожара.
Скорость роста периметра пожара (Vр) определяется
по формуле:
– при круговой и угловой форме площади пожара;
Vр =
, [м/мин.]
-для прямоугольной формы площади пожара;
Vр =
, [м/мин.]

1.9).Определение скорости роста фронта
пожара.
Скорость роста фронта пожара (Vф)
определяется по формуле:
Vф =
, [м/мин.].

2.Расчет сил и средств для тушения пожара.
Каждый пожар характеризуется своеобразной обстановкой, для
его тушения требуются различные огнетушащие средства и
разное количество сил и средств. От правильного их расчёта
зависит успех тушения любого пожара.
2.1).Определение площади тушения.
Площадь тушения (Sт) - это часть площади пожара, которую
на момент локализации обрабатывают поданными
огнетушащими средствами.
В зависимости от того, каким образом введены силы и средства,
тушение в данный момент времени может осуществляться с
охватом всей площади пожара или только её части. При этом
расстановка сил и средств, в зависимости от обстановки на
пожаре, конструктивных особенностей объекта, производится по
всему периметру пожара или по фронту его локализации. Если в
данный момент сосредоточенные силы и средства обеспечивают
тушение пожара по всей площади горения, то расчёт их
производится по площади пожара, т.е. площадь тушения будет
численно равна площади пожара.

Если в данный момент времени обработка всей площади
пожара огнетушащими средствами не обеспечивается, то
силы и средства сосредотачиваются по периметру или
фронту локализации или по фронту для поэтапного
тушения. В этом случае расчет их осуществляется по
площади тушения.
Площадь тушения водой во многом зависит от глубины
обработки горящего участка (глубина тушения), hт. [м].
Практикой установлено, что по условиям тушения
пожаров эффективно используется примерно третья часть
длины струи. Поэтому в расчётах глубина тушения для
ручных стволов принимается -5 метров, для лафетных –
10 метров.
Следовательно, площадь тушения будет численно
совпадать с площадью пожара при её ширине (для
прямоугольной формы),

не превышающих 10 метров при подаче ручных стволов,
введенных по периметру навстречу друг другу, и 20
метров – при тушении лафетными стволами. В остальных
случаях площадь тушения принимается равной разности
общей площади пожара и площади, которая в данный
момент водяными струями не обрабатывается. В жилых и
административных зданиях с небольшими помещениями
расчёт сил и средств целесообразно проводить по
площади пожара, т.к. их размеры не превышают глубины
тушения стволами.

Формулы для определения площади тушения даны в
таблице:
Форма
площади
пожара
Значение угла, град
Площадь тушения при расстановке сил и средств
по фронту
круговая
360º
Рис. 2 г.
угловая
90º
Рис. 2 д.
При L > h
Sт = 0,25π h (2L – h)
При L > 3h
Sт = 3,57h (L – h)
угловая
180º
Рис. 2 е.
При L > h
Sт = 0,5π h (2L – h)
При L > 2h
Sт = 3,57h (1,4L – h)
угловая
270º
Рис. 2 ж.
При L > h
Sт = 0,75π h (2L – h)
При L > 2h
Sт = 3,57h (1,8L – h)
См. рис. 2 а,б,в.
При b > n h
Sт = n a h
При a > 2h
Sт = 2h (а + b – 2h)
прямоугольная
При L > h
Sт = π h (2L – h)
по периметру
При L > h
Sт = π h (2L – h)
Примечание. При значениях «а», «b» и «L», равных и меньше значений,
указанных в таблице, площадь тушения будет соответствовать площади
пожара (Sт = Sп) и рассчитывается по формулам, приведенным в п.1.3.
данных методических указаний.

2.2).Определение требуемого расхода воды на
тушение пожара.
Расход огнетушащего вещества (Q;q) – это
количество данного вещества поданного в единицу
времени (л/с, л/мин., кг/с, кг/мин., м3/мин.).
Различают несколько видов расходов огнетушащего
средства: требуемый (Qтр.), фактический (Qф.), общий
(Qобщ.), которые приходится определять при решении
практических задач по пожаротушению.
Требуемый расход – это весовое или объёмное
количество огнетушащего средства, подаваемого в
единицу времени на величину соответствующего
параметра тушения пожара или защиты объекта,
которому угрожает опасность.
В практических расчётах требуемого количества
огнетушащего вещества для прекращения горения
пользуются величиной его подачи.

Интенсивность подачи огнетушащих средств (I) –
количество данного огнетушащего средства, подаваемого в
единицу времени на единицу расчётного параметра
тушения пожара.
Под расчётным параметром тушения пожара (Пт)
понимается:
- площадь пожара, Sп;
- площадь тушения, Sт;
- периметр пожара, Pп;
- фронт пожара, Фп;
- объём тушения, Vпом.
Интенсивности подачи огнетушащих средств различают:
- линейная, Iл [л/(см); кг/(см)];
- поверхностная, Is [л/(см2); кг/(см2)];
- объёмная, IV [л/(см3); кг/(см3)].

Они определяются опытным путём и расчётами при
анализе потушенных пожаров. Поверхностную и
объёмную интенсивности можно определить по
«Справочнику РТП» стр.56-57. Линейная
интенсивность определяется по формуле:
Iл = Is * hт
Требуемый расход огнетушащего средства на тушение
пожара определяется по формуле:
Qттр. = Пт * Iтр. ,
где
Пт – величина расчетного параметра тушения пожара;
Iтр.–требуемая интенсивность подачи огнетушащего
средства (Приложение № 6).

2.3). Определение требуемого расхода воды на защиту.
Требуемый расход воды на защиту выше и нижерасположенных
уровней объекта от того уровня, где произошел пожар,
рассчитывается по формуле:
Qзащтр. = Sзащ *Iтрзащ, [л/с].
где:
Sзащ – площадь защищаемого участка, [м2];
Iтрзащ– требуемая интенсивность подачи огнетушащих средств на
защиту. Если в нормативных документах и справочной литературе нет
данных по интенсивности подачи огнетушащих средств на защиту
объектов например, при пожарах в зданиях, её устанавливают по
тактическим условиям обстановки и осуществления боевых действий
по тушению пожара, исходя из оперативно-тактической
характеристики объекта, или принимают уменьшенной в 4 раза по
сравнению с требуемой интенсивностью подачи на тушение пожара и
определяется по формуле:
Iтрзащ = 0,25 * Iтр. , [л/(с*м2)]

2.4). Определение общего расхода воды.
Qтр. =
+
., [л/с].
2.5). Определение требуемого количества
стволов на тушение пожара.
где:
Nтств. =
,
qств.– расход ствола, [л/с].

2.6). Определение требуемого количества стволов на
защиту объекта.
=
При осуществлении защитных действий водяными струями
нередки случаи, когда требуемое количество стволов
определяют не по формуле, а по количеству мест защиты,
исходя из условий обстановки, оперативно-тактических
факторов и требований «Боевого устава пожарной
охраны» (БУПО).
Например, при пожаре на одном или нескольких этажах
здания с ограниченными условиями распространения огня
стволы для защиты подаются в смежные с горящим
помещения, в нижний и верхний от горящего этажи,
исходя из количества мест защиты и обстановки на
пожаре.

Если имеются условия для распространения огня по
пустотам, вентиляционным каналам и шахтам, то стволы
для защиты подаются исходя из обстановки на пожаре:
- в смежные с горящим помещения;
- в верхние этажи, вплоть до чердака;
- в нижние этажи, вплоть до подвала.
Количество стволов в смежных помещениях, в нижнем и
верхнем от горящего этажах, должны соответствовать
количеству мест защиты по тактическим условиям
осуществления боевых действий, а на остальных этажах и
на чердаке их должно быть не менее одного.

2.7). Определение общего количества стволов на тушение
пожара и защиту объекта.
Nств. =
+
2.8). Определение фактического расхода воды на тушение
пожара.
Фактический расход (Qф) – весовое или объёмное количество
огнетушащего средства, фактически подаваемого в единицу
времени на величину соответствующего параметра тушения
пожара или защиты объекта, [л/с]; [кг/с]; [м3/с]; [л/мин.];
[кг/мин.]; [м3/мин.].
Фактический расход находится в зависимости от количества и
тактико-технической характеристики приборов подачи
огнетушащих средств и определяется по формуле:
=
*qств. , [л/с].

2.9). Определение фактического расхода воды на
защиту объекта.
=
*qств. , [л/с].
2.10). Определение общего фактического расхода
воды на тушение пожара и защиту объекта.
Qф =
+
, [л/с].

11). Определение водоотдачи наружного противопожарного
водопровода.
При наличии противопожарного водопровода
обеспеченность объекта водой проверяется по водоотдаче
данного водопровода. Обеспеченность объекта считается
удовлетворительной, если водоотдача водопроводной сети
превышает фактический расход воды для целей
пожаротушения. При проверке обеспеченности объекта водой
бывают случаи, когда водоотдача удовлетворяет фактический
расход, но воспользоваться этим невозможно из-за отсутствия
достаточного количества пожарных гидрантов. В этом случае
необходимо считать, что объект обеспечен водой частично.

Следовательно, для полной обеспеченности объекта водой
необходимы два условия:
- чтобы водоотдача водопроводной сети превышала
фактический расход воды (QcетиQф);
- чтобы количество пожарных гидрантов соответствовало бы
количеству пожарных автомобилей, которые необходимо установить на
эти гидранты (NпгNавт.).
Водопроводные сети бывают двух видов:
- кольцевые;
- тупиковые.
Водоотдача кольцевой водопроводной сети рассчитывается по
формуле:
Qксети = (D/25)2 Vв, [л/с],
где:
D – диаметр водопроводной сети, [мм];
25 – переводное число из миллиметров в дюймы;
Vв – скорость движения воды в водопроводе, которая равна:
- при напоре водопроводной сети H<30 м вод.ст. -Vв =1,5 [м/с];
- при напоре водопроводной сети H>30 м вод.ст. -Vв =2 [м/с].
Водоотдача тупиковой водопроводной сети рассчитывается по формуле:
Qтсети = 0,5 Qксети, [л/с].

2.12). Определение времени работы пожарного автомобиля от
пожарного водоёма.
При наличии на объектах пожарных водоёмов и использовании их
для целей пожаротушения определяют время работы пожарного
автомобиля установленного на данный водоисточник по формуле:
=
, [мин.],
где:
0,9 – коэффициент заполнения пожарного водоема;
Vпв – объем пожарного водоема, [м3];
1000 – переводное число из м3 в литры.
Время работы пожарного автомобиля с установкой его на пожарный
водоём должно соответствовать условию:
раб.> р*Кз,
где:
р – расчётное время тушения пожара (Приложение №17).[мин.];
Кз – коэффициент запаса огнетушащего средства определяется по
таблице (Приложение №9).

2.13). Определение требуемого запаса воды для тушения пожара и
защиты объекта.
На объектах, где запас воды для целей пожаротушения ограничен,
проводится расчёт требуемого запаса воды для тушения и защиты
по формуле:
Wв = Qтф * 60 * р * Кз + Qзащф * 60 * з, [л],
где:
з – расчётное время запаса определяется по таблице (Приложение
№9),[ч].
В тех случаях, когда на объектах огнетушащих средств
недостаточно, принимаются меры к их увеличению: повышается
водоотдача путём увеличения напора в сети, организуется
перекачка или подвоз воды с удалённых водоисточников,
специальные средства доставляются с резервных складов
гарнизона и опорных пунктов тушения крупных пожаров.
При наличии рек, озёр и других естественных водоисточников с
неограниченным запасом воды обеспеченность объекта данным
видом огнетушащего средства в расчётах не проверяется.

2.14). Определение предельного расстояния подачи огнетушащих средств.
Lпред=
, [м]
где:
Нн – напор на насосе, который равен 90-100 м вод.ст.;
Нразв –напор у разветвления, который равен 40-50 м вод.ст.;
Zм –наибольшая высота подъёма (+) или спуска (-) местности на
предельном расстоянии, [м];
Zств - наибольшая высота подъёма (+) или спуска (-) ствола от места
установки разветвления или прилегающей местности на пожаре, [м];
S- сопротивление одного пожарного рукава, (Приложение №11);
Q- суммарный расход воды одной наиболее загруженной магистральной
рукавной линии, [л/с];
«20»- длина одного напорного рукава, [м];
«1,2»- коэффициент рельефа местности.
Полученное расчётным путём предельное расстояние по подаче
огнетушащих средств следует сравнить с расстоянием от водоисточника,
на который установлен пожарный автомобиль, до места пожара (L). При
этом должно соблюдаться условие:
Lпред > L

2.15). Определение требуемого количества пожарных автомобилей, которые
необходимо установить на водоисточники.
Использование насосов на полную тактическую возможность в практике тушения
пожаров является основным и обязательным требованием. При этом боевое
развёртывание производится в первую очередь от пожарных автомобилей,
установленных на ближайших водоисточниках. Требуемое количество пожарных
автомобилей, которые необходимо установить на водоисточники, определяется по
формуле:
Nавт.= ,
где:
0,8 – коэффициент полезного действия пожарного насоса;
Qн – производительность насоса пожарного автомобиля, [л/с].
При одинаковой схеме боевого развёртывания отделений на основных пожарных
автомобилях расчет проводится по формуле:
Nавт.=,
где:
Qотд. – расход огнетушащего средства, которое может подать одно отделение,
[л/с].
В любом из указанных случаев, если позволяют условия (в частности, насоснорукавная система), боевые расчёты прибывающих подразделений должны
использовать для работы уже установленные на водоисточники пожарные
автомобили. Это не только обеспечит использование техники на полную мощность,
но и ускорит введение сил и средств на тушение пожара.

2.16). Определение требуемой численности личного состава для
тушения пожара.
Общую численность личного состава определяют путём
суммирования числа людей, занятых на проведение различных
видов боевых действий. При этом учитывают обстановку на пожаре,
тактические условия его тушения, действия, связанные с
проведением разведки пожара, боевого развертывания, спасания
людей, эвакуации материальных ценностей, вскрытия конструкций
и т.д. С учётом сказанного формула для определения численности
личного состава будет иметь следующий вид:
Nл.с.=Nгдзс*3+ Nств.«А»*2+
«Б» 1 +
«Б»*2+ Nп.б.*1+
Nавт.*1+ Nл*1+ +Nсв.*1+... ,
где:
Nгдзс - количество звеньев ГДЗС («3» – состав звена ГДЗС 3
человека)
Nств.«А» - количество работающих на тушении и защите стволов
РС-70 («2» – два человека, работающих с каждым стволом). При
этом не учитываются те стволы РС-70, с которыми работают звенья
ГДЗС;

«Б» - количество работающих на тушении пожара стволов
РСК – 50 («1» – один человек, работающий с каждым стволом).

работают звенья ГДЗС;
«Б» - количество работающих на защите объекта стволов
РСК – 50 («2» – два человека, работающих с каждым стволом).
При этом не учитываются те стволы РСК-50, с которыми
работают звенья ГДЗС, производящие защиту объекта;
Nп.б. – количество организованных на пожаре постов
безопасности;
Nавт. – количество пожарных автомобилей, установленных на
водоисточники и подающих огнетушащие средства. Личный
состав при этом занят контролем за работой насосно-рукавных
систем из расчёта: 1 человек на 1 автомобиль;
Nл - количество выдвижных лестниц на которые задействованы
страховщики из расчета: 1 человек на 1 лестницу;
Nсв. – количество связных, равное количеству прибывших на
пожар подразделений.

Ориентировочные нормативы требуемой численности
личного состава для выполнения работ на пожаре
приведены в приложении № 13.
При определении численности необходимо учитывать не
только нормативы, но и также конкретную обстановку на
пожаре и условия при его тушении.
Надо иметь в виду, что в общее количество личного состава
не включается средний и старший начальствующий состав,
а также водители пожарных автомобилей.
Если требуемая численность людей превышает
возможности гарнизона пожарной охраны, недостающее
количество личного состава компенсируется путём
привлечения к действиям на пожаре добровольных
пожарных формирований, рабочих, служащих, воинских
подразделений, работников милиции, населения и других
сил.

2.17). Определение количества отделений.
При определении требуемого количества подразделений
исходят из следующих условий: если в боевых расчётах
гарнизона находятся преимущественно пожарные
автоцистерны, то среднюю численность личного состава
для одного отделения принимают 4 человека, а при
наличии автоцистерн и автонасосов (насосно-рукавных
автомобилей) – 5 человек. В указанные числа не входят
водители пожарных автомобилей.
Требуемое количество отделений на основных
пожарных автомобилей (АЦ, АН, АНР) определяется по

Для оценки возможной обстановки на пожаре существует множество показателей. Особое значение среди них представляют геометрические и физические параметры пожара, такие как: площадь, периметр, фронт пожара; температура пожара.

Прогнозирование возможной обстановки на пожаре осуществляется по известным формулам на два момента времени:

1. На момент подачи огнетушащих средств первым прибывшим подразделением (время свободного развития пожара) – , мин;

2. На момент локализации пожара – , мин (подача огнетушащих средств последним прибывшим подразделением по вызову № 2).

В расчетах линейная скорость распространения горения – принимается равной:

– при значении времени развития пожара мин половине ее табличного или заданного значения ();

– при значении мин и до введения первых средств на тушение пожара ее табличной или заданной величине ();

– после введения стволов на тушение половине ее табличного или заданного значения ().

Последовательность расчета:

1. Прогнозирование параметров пожара на момент подачи огнетушащих средств первым прибывшим подразделением на тушение пожара.

1.1. Определяем время свободного развития пожара – , мин.:

где – время с момента возникновения пожара до сообщения о нем

(Приложение 1);

– время обработки диспетчером вызова и подачи сигнала тревоги;

– время сбора и выезда пожарных по тревоге;

– расчетное время прибытия первого пожарного подразделения к

месту пожара (табл. 1 Приложения 2);

– время развертывания пожарного вооружения первым прибывшим

Подразделением (Приложение 1).

Время () – принимается равным 1 минуте.

1.2. Определяем путь, пройденный огнем за время свободного развития пожара – , м:



где – линейная скорость распространения горения, м/мин – задается в

задании (Приложение 1).

1.3. Определяем форму площади пожара.

На плане объекта, выполненного в масштабе на формате листа А3 (лист 1 графической части), от очага пожара откладываем полученное значение в направлениях развития пожара, принимая, что огонь распространяется во всех направлениях равномерно с одинаковой скоростью.

При достижении фронтом пожара стен помещения геометрическая форма площади пожара изменяется с угловой формы на прямоугольную форму.

При выходе пожара за пределы помещения, в котором он произошел, рассчитываем путь, пройденный огнем через дверные проемы – , м:

– если при переходе формы площади пожара из угловой формы в прямоугольную форму дверной проем находится в пределах фактической площади пожара –

, (3)

где – проекция расстояния от очага пожара до центра дверного проема

на вертикальную или горизонтальную ось, м;

– если при переходе формы площади пожара из угловой формы в прямоугольную форму дверной проем находится в пределах приращенной площади пожара –

, (4)

где – расстояние от очага пожара до стены помещения, при котором

происходит изменение формы площади пожара, м.

Механизм перехода огня из одного помещения в другое через открытые дверные проемы подробно изложен в «Сборнике задач по основам тактики тушения пожаров» .

Штриховкой показывается площадь пожара.

1.4. В зависимости от формы площади пожара по известным математическим формулам (Приложение 5) рассчитываем основные геометрические параметры пожара (площадь, периметр, фронт пожара) для оценки обстановки на заданный момент времени.

1.5. Полученные данные: времени развития пожара, пути пройденного огнем за время развития пожара, площади, фронте, периметре пожара заносятся в табл. 1.

2. Прогнозирование параметров пожара на момент локализации пожара.

2.1. Определяем время локализации пожара – , мин.:

, (5)

где – время развития пожара до момента локализации пожара;

– расчетное время прибытия последнего пожарного подразделения

к месту пожара по вызову № 2 (табл. 1 Приложения 2);

– время развертывания пожарного вооружения последним

прибывшим подразделением по вызову № 2 (Приложение 1).

2.2. Определяем путь, пройденный огнем за время развития пожара до момента его локализации – , м:

2.3. Определяем форму площади пожара.

На плане объекта, выполненного в масштабе на формате листа А3 (лист 1 графической части), от очага пожара откладываем полученное значение в направлениях развития пожара, принимая, что огонь распространяется во всех направлениях равномерно с одинаковой скоростью. При выходе пожара за пределы помещения, в котором он произошел, рассчитываем путь, пройденный огнем через дверные проемы – , м (см. п. 1.3).

На полученную площадь пожара наносим штриховку. Частота штриховки должна отличаться от частоты штриховки, нанесенной на площадь пожара при свободном времени развития пожара.

2.4. В зависимости от формы площади пожара по известным математическим формулам (Приложение 5) рассчитываем основные геометрические параметры пожара (площадь, периметр, фронт пожара) для оценки обстановки на заданный момент времени.

2.5. Полученные данные: времени развития пожара, пути пройденного огнем за время развития пожара, площади, фронте, периметре пожара заносятся в табл. 1.

Таблица 1

Данные параметров по развитию пожара

Примеры по определению основных геометрических параметров развития пожара приведены в Приложении 14.


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча