21.09.2019

Давление ненасыщенного пара. Конспект урока "Зависимость давления насыщенного пара от температуры. Кипение"


Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рисунка 12, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 12. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (IV, 5), а вдали от критической температуры уравнением (IV, 8).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (IV, 8)

(IV, 9)

Представив уравнение (IV, 9) в виде неопределенного интеграла, получим:

(IV, 10),

где С - константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах (в этом случае тангенс наклона прямой равен ). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.13 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Рис. 13. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

Однако уравнение (IV, 10) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур - от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом, т.к. при этом существенно возрастает его давление. Поэтому уравнение, охватывающее зависимость P = f(T) в широком интервале температур, неизбежно становится эмпирическим.

Сверхкритическое состояние – четвертая форма агрегатного состояния вещества, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.



Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояния, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –239,9° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода (критические температуры соответственно –118,4° С и –147° С), поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка для воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как точка плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr, KI). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем.

Сейчас сложились и продуктивно сосуществуют два самостоятельных направления использования сверхкритических флюидов. Эти два направления различаются конечными целями того, что достигается с помощью этих сверхкритических сред. В первом случае СКФ используются для экстракции необходимых веществ из различных материалов, продуктов или отходов производства. И в этом есть огромная экономическая заинтересованность. Во втором случае СКФ используют непосредственно для осуществления ценных, часто новых химических превращений. Надо подчеркнуть, что достоинства СКФ в качестве экстрагентов обусловлены прежде всего тем, что они оказались способными исключительно эффективно растворять неполярные соединения, в том числе и твердые вещества. Это основное достоинство резко усиливается уже упоминавшейся нами высокой диффузионной способностью СКФ и их исключительно низкой вязкостью. Обе последние особенности приводят к тому, что скорость экстракции становится чрезвычайно высокой. Приведём только некоторые примеры.

Так, деасфальтизация смазочных масел осуществляется с использованием сверхкритического пропана. Сырое масло растворяется в сверхкритическом пропане при давлении, заметно более высоком, чем Р кр . При этом в раствор переходит всё, кроме тяжелых асфальтовых фракций. Из-за огромной разницы в вязкостях сверхкритического раствора и асфальтовой фракции механическое разделение осуществляется очень легко. Затем сверхкритический раствор поступает в расширительные емкости, в которых давление постепенно снижается, оставаясь, однако, выше Р кр вплоть до последней ёмкости. В этих ёмкостях последовательно выделяются из раствора всё более легкие примесные фракции нефтей из-за снижения их растворимости с падением давления. Разделение фаз в каждой из этих ёмкостей опять осуществляется очень легко вследствие резкого различия их вязкостей. В последней ёмкости давление ниже Р кр , пропан при этом испаряется, в результате выделяется очищенное от нежелательных примесей масло.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счёт высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

В настоящее время большое практическое значение имеет высокая растворимость H 2 в сверхкритических средах, поскольку полезные процессы гидрирования очень распространены. Так, например, разработан эффективный процесс каталитического гидрирования CO 2 в сверхкритическом состоянии, приводящий к образованию муравьиной кислоты. Процесс протекает очень быстро и чисто.

На этом уроке мы разберём свойства несколько специфичного газа - насыщенного пара. Мы дадим определение этому газу, укажем, чем он принципиально отличается от идеальных газов, рассмотренных нами ранее, и, конкретнее, чем отличается зависимость давления насыщенного газа. Также в этом уроке будет рассмотрен и описан такой процесс, как кипение.

Для понимания отличий насыщенного пара от идеального газа нужно представить себе два опыта.

Во-первых, возьмём герметично закрытый сосуд с водой и начнём его нагревать. С увеличением температуры молекулы жидкости будут иметь всё большую кинетическую энергию, и всё большее количество молекул сможет вырваться из жидкости (см. рис. 2), следовательно, будет расти концентрация пара и, следовательно, его давление. Итак, первое положение:

Давление насыщенного пара зависит от температуры

Рис. 2.

Однако, это положение вполне ожидаемо и не столь интересно, как следующее. Если поместить жидкость с её насыщенным паром под подвижный поршень и начать этот поршень опускать, то, несомненно, концентрация насыщенного пара увеличится из-за уменьшения объёма. Однако через некоторое время пар перейдёт с жидкостью к новому динамическому равновесию путём конденсации лишнего количества пара, и давление в конце концов не поменяется. Второе положение теории насыщенного пара:

Давление насыщенного пара не зависит от объёма

Теперь же следует отметить тот факт, что давление насыщенного пара хоть и зависит от температуры, как и идеальный газ, но характер этой зависимости несколько иной. Дело в том, что, как мы знаем из основного уравнения МКТ, давление газа зависит как от температуры, так и от концентрации газа. И поэтому давление насыщенного пара зависит от температуры нелинейно до тех пор, пока увеличивается концентрация пара, то есть пока вся жидкость не испарится. На приведённом ниже графике (рис. 3) показан характер зависимости давления насыщенного пара от температуры,

Рис. 3

причём переход от нелинейного участка к линейному как раз и означает точку испарения всей жидкости. Так как давление насыщенного газа зависит только от температуры, возможно абсолютно однозначно установить, какое будет давление насыщенного пара при заданной температуре. Эти соотношения (а также значения плотности насыщенного пара) занесены в специальную таблицу.

Обратим теперь наше внимание на такой важный физический процесс, как кипение. В восьмом классе уже давалось определение кипению как процессу парообразования более интенсивному, нежели испарение. Теперь же мы несколько дополним это понятие.

Определение. Кипение - процесс парообразования, протекающий по всему объёму жидкости. Каков же механизм кипения? Дело в том, что в воде всегда есть растворённый воздух, а в результате увеличения температуры его растворимость уменьшается, и образуются микропузырьки. Так как дно и стенки сосуда не идеально гладкие, эти пузырьки цепляются за неровности внутренней стороны сосуда. Теперь раздел вода-воздух существует не только у поверхности воды, но и внутри объёма воды, и в пузырьки начинают переходить молекулы воды. Таким образом, внутри пузырьков появляется насыщенный пар. Далее эти пузырьки начинают всплывать, увеличиваясь в объёме и принимая большее количество молекул воды внутрь себя, а у поверхности лопаются, выбрасывая насыщенный пар в окружающую среду (рис. 4).

Рис. 4. Процесс кипения ()

Условием же образования и всплытия этих пузырьков является следующее неравенство: давление насыщенного пара должно быть больше или равняться атмосферному давлению.

Таким образом, так как давление насыщенного пара зависит от температуры, температура кипения определяется давлением окружающей среды: чем оно меньше, тем при более низкой температуре закипает жидкость, и наоборот.

На следующем уроке мы начнём рассматривать свойства твёрдых тел.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Physics.ru ().
  2. Chemport.ru ().
  3. Narod.ru ().

Домашнее задание

  1. Стр. 74: № 546-550. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Почему альпинисты не могут сварить яйца на высоте?
  3. Какие вы можете привести способы остудить горячий чай? Обоснуйте их с точки зрения физики.
  4. Почему следует ослаблять газовый напор на конфорке после закипания воды?
  5. *Каким образом можно добиться нагревания воды выше ста градусов по Цельсию?

>>Физика: Зависимость давления насыщенного пара от температуры. Кипение

Жидкость не только испаряется. При некоторой температуре она кипит.
Зависимость давления насыщенного пара от температуры . Состояние насыщенного пара, как показывает опыт (мы говорили об этом в предыдущем параграфе), приближенно описывается уравнением состояния идеального газа (10.4), а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры.
Однако зависимость р н.п. от Т , найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее, чем давление идеального газа (рис.11.1 , участок кривой АВ ). Это становится очевидным, если провести изохоры идеального газа через точки А и В (штриховые прямые). Почему это происходит?

При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле (11.1) давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара . В основном увеличение давления при повышении температуры определяется именно увеличением концентрации. Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.
Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорционально абсолютной температуре (см. рис.11.1 , участок кривой ВС ).
. По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. При каких условиях начинается кипение?
В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь.
Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.
Обратим внимание на то, что испарение жидкости происходит при температурах, меньших температуры кипения, и только с поверхности жидкости, при кипении образование пара происходит по всему объему жидкости.
Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости.
Чем больше внешнее давление, тем выше температура кипения . Так, в паровом котле при давлении, достигающем 1,6 10 6 Па, вода не кипит и при температуре 200°С. В медицинских учреждениях в герметически закрытых сосудах - автоклавах (рис.11.2 ) кипение воды также происходит при повышенном давлении. Поэтому температура кипения жидкости значительно выше 100°С. Автоклавы применяют для стерилизации хирургических инструментов и др.

И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения . Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре (рис.11.3 ). При подъеме в горы атмосферное давление уменьшается, поэтому уменьшается температура кипения. На высоте 7134 м (пик Ленина на Памире) давление приближенно равно 4 10 4 Па (300 мм рт. ст.). Вода кипит там примерно при 70°С. Сварить мясо в этих условиях невозможно.

У каждой жидкости своя температура кипения, которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости, так как при меньших температурах давление насыщенного пара становится равным атмосферному . Например, при температуре кипения 100°С давление насыщенных паров воды равно 101 325 Па (760 мм рт. ст.), а паров ртути - всего лишь 117 Па (0,88 мм рт. ст.). Кипит ртуть при температуре 357°С при нормальном давлении.
Жидкость закипает, когда давление ее насыщенного пара становится равно давлению внутри жидкости.

???
1. Почему температура кипения возрастает с увеличением давления?
2. Почему для кипения существенно повышение давления насыщенного пара в пузырьках, а не повышение давления имеющегося в них воздуха ?
3. Как заставить закипеть жидкость, охлаждая сосуд? (Вопрос этот непростой.)

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

И что будет происходить с насыщенным паром, если уменьшить занимаемый им объем? Например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержи­мого цилиндра постоянной.

При сжатии пара равновесие нач­нет нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжа­ется до тех пор, пока вновь не установится динамическое равно­весие и плотность пара, а значит, и концентрация его молекул не примут прежнее значение. Следова­тельно, концентрация молекул на­сыщенного пара при постоянной температуре не зависит от его объема.

Так как давление пропорциональ­но концентрации молекул (p = nkT ), то из этого определения следует, что давление насыщенного пара не зависит o т занимаемого им объема.

Давление пара , при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

  • Ненасыщенный пар.

Мы много раз употребляли слова газ и пар. Никакой принципиальной разницы между газом и паром нет. Но если при неизменной температуре газ простым сжатием можно превратить в жидкость, то мы называем его паром, точнее, ненасыщенным паром.

  • Зависимость давления насыщен­ного пара от температуры.

Состояние насыщенного пара, как говорит опыт, приближенно описывается уравне­нием состояния идеального газа, а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщен­ ного пара не зависит от объема, оно зависит только от температуры.

Однако эта зависимость ро(Т), найденная экспериментально, не яв­ляется прямо пропорциональной, как у идеального газа при постоян­ном объеме. С увеличением темпера­туры давление насыщенного пара растет быстрее, чем давление идеаль­ного газа (рис. 30, участок кривой АВ). Это становится особенно оче­видным, если провести изохору через точку А (пунктирная прямая) Почему это происходит?

Однако эта зависимость р(Т), найденная экспериментально, не яв­ляется прямо пропорциональной, как у идеального газа при постоян­ном объеме. С увеличением темпера­туры давление насыщенного парабыстрее, чем давление идеаль­ного газа (рис. 30).Почему это происходит?

При нагревании жидкости в за­крытом сосуде часть жидкости превращается в пар. В результате согласно формуле
давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличе­ ния концентрации молекул (плот­ ности) пара . В основном увеличение давления при повышении температуры определяется именно увели­чением концентрации. Главное раз­личие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар или, напротив, пар частично конденсируется. Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорцио­нально абсолютной температуре (см. рис. 30, участок ВС).


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча