21.09.2019

Полупроводники - материалы для подготовки к егэ по физике


Для описания электронных явлений в неполностью заполненной электронами валентной зоне . В электронном спектре валентной зоны часто возникает несколько зон, различающихся величиной эффективной массы и энергетическим положением (зоны легких и тяжёлых дырок, зона спин-орбитально отщепленных дырок).

Для создания дырок в полупроводниках используется легирование кристаллов акцепторными примесями . Кроме того, дырки могут возникать и в результате внешних воздействий: теплового возбуждения электронов из валентной зоны в зону проводимости, освещения светом.

В случае кулоновского взаимодействия дырки с электроном из зоны проводимости образуется связанное состояние, называемое экситоном .



Wikimedia Foundation . 2010 .

Смотреть что такое "Дырка (носитель заряда)" в других словарях:

    Носители заряда общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока. Примерами подвижных частиц являются электроны, ионы. Примером квазичастицы носителя заряда… … Википедия

    В физике квантовое состояние, не занятое электроном. Термин дырка широко применяется в зонной теории твердого тела, как вакантное состояние в разрешенной заполненной зоне. Дырка положительно заряженный носитель заряда в полупроводнике … Большой Энциклопедический словарь

    И; мн. род. рок, дат. ркам; ж. 1. = Дыра (1 2 зн.). Дырки в стенах. В заднем зубе д. Заштопать дырку. На чулке огромная д. 2. Сквозное отверстие для крепления чего л. Дырки в ремне. Д. для шурупа. Просверлить, проткнуть дырку. 3. Разг. О пулевом … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Дырка (значения). Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    ГОСТ 22622-77: Материалы полупроводниковые. Термины и определения основных электрофизических параметров - Терминология ГОСТ 22622 77: Материалы полупроводниковые. Термины и определения основных электрофизических параметров оригинал документа: 11. Акцептор Дефект решетки, способный при возбуждении захватывать электрон из валентной зоны Определения… … Словарь-справочник терминов нормативно-технической документации

    В ва, характеризующиеся увеличением электрич. проводимости с ростом т ры. Хотя часто П. определяют как в ва с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (s ! 106 104 Ом 1 см 1) и для хороших диэлектриков (s ! 10 … Химическая энциклопедия

    Наблюдается при больших концентрациях примесей. Их взаимодействие ведёт к качественным изменениям свойств полупроводников. Это можно наблюдать в сильно легированных проводниках, содержащих примеси в столь больших концентрациях Nпр, что среднее… … Википедия

    Широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… … Большая советская энциклопедия

    Широкий класс в в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106 104 Ом 1 см 1 и хороших диэлектриков s=10 10 10 12 Ом 1см 1 (электропроводность указана при комнатной темп ре).… … Физическая энциклопедия

    Ов; мн. (ед. полупроводник, а; м.). Физ. Вещества, которые по электропроводности занимают промежуточное место между проводниками и изоляторами. Свойства полупроводников. Производство полупроводников. // Электрические приборы и устройства,… … Энциклопедический словарь

§ 2. Примесные полупроводники

§ 3. Эффект Холла

§ 4. Переходы между полупроводни­ками

§ 5. Выпрямление на полупровод­никовом переходе

§ 6. Транзистор

§ 1. Электроны и дырки в полупроводниках

Одним из самых замечательных и волную­щих открытий последних лет явилось приме­нение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупро­водников привело к открытию их полезных свойств и ко множеству практических приме­нений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.

Полупроводников известно немало, но мы ограничимся теми, которые больше всего при­меняются сегодня в технике. К тому же они и изучены лучше других, так что разобравшись в них, мы до какой-то степени поймем и многие другие. Наиболее широко применяемые в на­стоящее время полупроводниковые вещества это кремний и германий. Эти элементы кристал­лизуются в решетке алмазного типа - в такой кубической структуре, в которой атомы обла­дают четверной (тетраэдральной) связью со своими ближайшими соседями. При очень низ­ких температурах (вблизи абсолютного нуля) они являются изоляторами, хотя при комнатной температуре они немного проводят электричество. Это не металлы; их называют полупроводниками.

Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реаль­ной решетки кремния или германия уравнения были бы дру­гими. Но все существенное может стать ясным уже из резуль­татов для прямоугольной решетки.

Как мы видели в гл. И, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)1 формулой

Разные A - это амплитуды прыжков в направлениях х, у и z, а а, b , с - это постоянные решетки (интервалы между узлами) в этих направлениях.

Для энергий возле дна зоны формулу (12.1) можно прибли­зительно записать так:

(см. гл. 11, § 4).

Если нас интересует движение электрона в некотором опре­деленном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно напи­сать

где  - некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1).

Фиг. 12.1. Энергетическая диаг­рамма для электрона в кристалле изолятора.

Такой график мы будем называть «энергетиче­ской диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).

Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного опре­деленного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка пере­прыгивает от атома а к атому b , в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)

Математика для дырки такая же, как для добавочного элект­рона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд А х , A y и А z . У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обна­ружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только раз­ницей, что в некубических кристаллах масса зависит от направ­ления движения. Итак, дырка напоминает частицу с положи­тельным зарядом, движущуюся сквозь кристалл. Заряд ча­стицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сто­рону, то на самом деле это в обратную сторону движутся электроны.

Если в нейтральный кристалл поместить несколько электро­нов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны нач­нут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется ме­таллический электрод, перейти на него, оставив кристалл нейт­ральным.

Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если при­ложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и про­исходит, когда их нейтрализуют электроны с металлического электрода.

Электроны и дырки могут оказаться в кристалле одновре­менно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны назы­вают отрицательными носителями, а дырки - положитель­ными носителями.

До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон-дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.

Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S), - это энергия Е - , показанная на фиг. 12.2.

Фиг. 12.2, Энергия Е, требуемая для «рождения» свободного

электрона.

Это некоторая энергия,

превышающая Е - мин . Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S ",- это энергия Е + (фиг. 12.3), которая на какую-то долю выше, чем Е (=Е + мин ).

Фиг. 12.3. Энергия Е + , тре­буемая для «рождения» дырки в состоянии S".

А чтобы создать пару в со­стояниях S и S" , потребуется просто энергия Е - +Е + .

Образование пар - это, как мы увидим позже, очень частый процесс, и многие люди предпочитают поме­щать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два гра­фика.

Фиг. 12.4. Энергетические диаграммы для электрона и дырки.

Преимущества такого графика в том, что энергия E пары - + , требуемая для образования пары (электрона в S и дырки в S’ ), дается попросту расстоянием по вертикали между S и S" , как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энерге­тической шириной, или шириной щели, и равняется

е - мин + e + мин.

Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диа­граммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электро­нов и дырок .

Фиг. 12.5. Диаграмма энер­гетических уровней для электронов и дырок.

Как создается пара электрон-дырка? Есть несколько спо­собов. Например, световые фотоны (или рентгеновские лучи)

могут поглотиться и обра­зовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интен­сивности света. Если при­жать к торцам кристалла два электрода и прило­жить «смещающее» напря­жение, то электроны и дырки притянутся к элек­тродам. Ток в цепи будет пропорционален силе све­та. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон - дырка могут образоваться также части­цами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон - дырка. Подобные явления сотнями и тыся­чами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разы­грывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчи­ков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при ком­натных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки

I могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупро­водников разумных размеров (порядка сантиметра) можно по­лучать большой чистоты.

До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон - дырка. Энергией пару может снаб­дить тепловая энергия кристалла. Тепловые колебания кристал­ла могут передавать паре свою энергию, вызывая «самопроиз­вольное» рождение пар.

Вероятность (в единицу времени) того, что энергия, дости­гающая величины энергетической щели E щели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр(-Е щеяи / k Т), где Т- температура, а k- постоянная Больц­мана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положи­тельные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.

Если количество электронов в единице объема есть N n (n означает негативных, или отрицательных, носителей), а плот­ность положительных (позитивных) носителей N p , то вероят­ность того, что за единицу времени электрон с дыркой встре­тятся и проаннигилируют, пропорциональна произведению N n N p . При равновесии эта скорость должна равняться ско­рости, с какой образуются пары. Стало быть, при равновесии произведение N n N p должно равняться произведению некото­рой постоянной на больцмановский множитель

Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.

Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, N n = N р . Значит, каждое из этих чисел должно с температурой меняться как. Изменение мно­гих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от тем­пературы. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.

При комнатной температуре kТ составляет около 1 / 40 эв. При таких температурах уже есть достаточно дырок и электро­нов чтобы обеспечить заметную проводимость, тогда как, ска­жем, при 30°К (одной десятой комнатной температуры) прово­димость незаметна. Ширина щели у алмаза равна 6-7 эв, по­этому при комнатной температуре алмаз - хороший изолятор.

Так как в твёрдом теле атомы или ионы сближены на расстояние, сравнимое с размерами самого атома, то в нём происходят переходы валентных электронов от одного атома к другому. Такой электронный обмен может привести к образованию ковалентной связи. Это происходит в случае, когда электронные оболочки соседних атомов сильно перекрываются и переходы электронов между атомами происходят достаточно часто.

Эта картина полностью применима к такому типичному полупроводнику, как германий (Ge). Все атомы германия нейтральны и связаны друг с другом ковалентной связью. Однако электронный обмен между атомами не приводит непосредственно к электропроводности, поскольку в целом распределение электронной плотности жестко фиксировано: по 2 электрона на связь между каждой парой атомов - ближайших соседей. Чтобы создать проводимость в таком кристалле, необходимо разорвать хотя бы одну из связей (нагрев, поглощение фотона и т.д.), то есть, удалив с неё электрон, перенести его в какую-либо другую ячейку кристалла, где все связи заполнены и этот электрон будет лишним. Такой электрон в дальнейшем свободно может переходить из ячейки в ячейку, так как все они для него эквивалентны, и, являясь всюду лишним, он переносит с собой избыточный отрицательный заряд, то есть становится электроном проводимости.

Разорванная же связь становится блуждающей по кристаллу дыркой, поскольку в условиях сильного обмена электрон одной из соседних связей быстро занимает место ушедшего, оставляя разорванной ту связь, откуда он ушёл. Недостаток электрона на одной из связей означает наличие у атома (или пары атомов) единичного положительного заряда, который, таким образом, переносится вместе с дыркой.

В случае ионной связи перекрытие электронных оболочек меньше, электронные переходы менее часты. При разрыве связи также образуются электрон проводимости и дырка - лишний электрон в одной из ячеек кристалла и некомпенсированный положительный заряд в другой ячейке. Оба они могут перемещаться по кристаллу, переходя из одной ячейки в другую.

Наличие двух разноимённо заряженных типов носителей тока - электронов и дырок является общим свойством полупроводников и диэлектриков. В идеальных кристаллах эти носители появляются всегда парами - возбуждение одного из связанных электронов и превращение его в электрон проводимости неизбежно вызывает появление дырки, так что концентрации обоих типов носителей равны. Это не означает, что вклад их в электропроводность одинаков, так как скорость перехода из ячейки в ячейку (подвижность) у электронов и дырок может быть различной. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться, так что электропроводность в таком случае будет осуществляется практически только одним типом носителей.

Энергетический спектр чистых (или, как говорят, собственных) полупроводниковых кристаллов отличается от спектра диэлектриков только в количественном отношении - меньшими значениями щели , в результате чего при обычных темературах в полупроводнике имеется значительная (по сравнению с диэлектриком) плотность носителей тока. Ясно, что это различие условно, и к тому же зависит от интересующей нас области температур.

В примесных (или легированных) полупроводниках дополнительным источником электронов или дырок являются атомы примесей, для которых энергетическая щель по отношению к отдаче электрона в решетку (донорная примесь) или его захвата из решетки (акцепторная примесь) оказывается меньше, чем энергетическая щель в основном спектре.

Рассмотрим подробнее вопрос о связи между величиной щели А и плотностью электронов проводимости и дырок в полупроводнике (или диэлектрике).

Попарное возникновение или исчезновение электрона и дырки можно рассматривать, с термодинамической точки зрения, как «химическую реакцию» (основное состояние кристалла играет роль «вакуума»). По общим правилам (см. V § 101) условие термодинамического равновесия этой реакции записывается в виде

где - химические потенциалы электронов и дырок. Ввиду сравнительно небольшой плотности электронов и дырок в полупроводнике (при ) распределение Ферми для них с большой точностью сводится к распределению Больцмана, так что электроны и дырки образуют классический газ. Из условия (67,1) следует тогда обычным образом (см. V § 101) закон действующих масс, согласно которому произведение равновесных плотностей

где справа стоит функция температуры, зависящая только от свойств основной решетки, на атомах которой и происходит рождение и уничтожение электронов и дырок; эта функция не зависит от наличия или отсутствия примесей. Вычислим функцию приняв для определенности, что энергии электронов и дырок являются квадратичными функциями квазиимпульса (66,1).

Распределение электронов (в единице объема) по квазиимпульсам дается распределением Больцмана

(множитель 2 учитывает два направления спина). Переход к распределению по энергиям осуществляется заменой

где - главные значения тензора эффективных масс .

Полное число электронов в единице объема есть, следовательно,

(в виду быстрой сходимости интегрирование можно распространить до бесконечности). Вычислив интеграл, находим

Рассмотрим опять контакт двух полупроводников р- и n -типа и предположим, что через него идет ток в проходном направлении (рис. 434). Дырки в р -области движутся к р-n -переходу и, проходя через него, вступают в n -область в качестве неосновных носителей заряда, где и рекомбинируют с электронами. То же относится и к электронам в n -области, которые, переходя границу раздела, попадают в р -область и рекомбинируют с дырками. Однако эта рекомбинация происходит не мгновенно, и поэтому в n -области окажется избыточная концентрация дырок n д, а в р -области - избыточная концентрация электронов n э. При этом избыточные дырки в n -области будут притягивать к себе электроны, так что увеличится и концентрация электронов; объемный заряд, как и в отсутствии тока, не обра­зуется. То же будет происходить и в р -области, где увеличение концентрации электронов повлечет за собой увеличение концентрации дырок.

Таким образом, при наличии электрического тока через р-n -переход состояние электронов и дырок в полупроводнике становится неравновесным. Их концентрация делается больше ее равновесного значения, происходит как бы «впрыскивание» дырок в n -область и электронов в р -область. Описанное явление получило название инжекции электронов и дырок.

Отметим, что нарушение равновесного состояния электронов и дырок можно также получить под действием освещения полупроводника, даже если последний и однороден. В этом случае изменение концентрации электронов и дырок приводит к изменению электропроводности полупроводника под действием света (явление фотопроводимости).

По мере движения избыточные дырки и электроны будут рекомбинировать и их концентрация будет уменьшаться. Поэтому распределение концентраций избыточных электронов и дырок в кристалле существенно зависит от скорости их рекомбинации. Остановимся на этом вопросе подробнее.

Положим, что в полупроводнике каким-либо способом (инжекцией, освещением или другим) была создана концентрация избыточных электронов и дырок n 0 , одинаковая во всех местах кристалла, и что эти избыточные носители заряда исчезают вследствие рекомбинации. Уменьшение концентрации электронов или дырок -dп за время dt пропорционально избыточной их концентрации n и времени:

Здесь 1/τ коэффициент пропорциональности, определяющий вероятность рекомбинации, а величина τ получила название среднего времени жизни избыточных (или неравновесных) носителей заряда. Она зависит от рода и качества материала, от его состояния и от содержащихся в нем примесей. Интегрируя написанное уравнение, находим:

где n 0 - начальная концентрация избыточных носителей. Отсюда видно, что τ есть такое время, через которое концентрация неравновесных носителей вследствие рекомбинации уменьшается в e = 2,71 раза.


Пользуясь понятием времени жизни, мы можем сейчас вернуться к распределению электронов и дырок в пространстве (рис. 434). Для этого рассмотрим в правой части кристалла (n -области) бесконечно тонкий слой, ограниченный плоскостями, параллельными р-n -переходу и удаленными от него на расстояния х и (х+dx).

Через каждую единицу поверхности плоскости х в единицу времени вследствие диффузии внутрь слоя будет входить число дырок где D д - коэффициент диффузии дырок и n -области. Через плоскость (х+dх ) будет выходить из слоя число дырок Поэтому полное приращение количества дырок за единицу времени вследствие диффузии, отнесенное к единице объема, равно + . Кроме этого внутри слоя будет происходить уменьшение числа дырок вследствие рекомбинации. Согласно сказанному выше число исчезающих дырок в единицу времени, также отнесенное к единице объема, есть В стационарном состоянии количество поступающих дырок вследствие диффузии должно быть равно числу дырок, исчезающих вследствие рекомбинации. Поэтому для определения пространственного распределения концентрации избыточных дырок (и равной ей концентрации избыточных электронов) в n -области мы получаем уравнение

где введено обозначение:

Граничные условия задачи имеют следующий вид. При х=0 п д =п д0 , где п д0 - концентрация избыточных дырок вблизи перехода. Кроме этого при х →∞ п д 0, так как на достаточно большом расстоянии от перехода все избыточные дырки успевают рекомбинировать с электронами.

Решение написанного уравнения, удовлетворяющее граничным условиям, имеет вид:

Оно показывает, что концентрация инжектированных дырок затухает с увеличением расстояния от перехода по экспоненциальному закону. Введенная нами характеристическая длина L д, есть расстояние, на котором концентрация избыточных дырок уменьшается в е = 2,71 раза. Величина L д носит название длины диффузионного смещения или, короче, длины диффузии дырок.

Совершенно аналогично концентрация инжектированных электронов в р -области будет тоже уменьшаться по экспоненциальному закону, но будет определяться длиной диффузии электронов где D э - коэффициент диффузии электронов, а τ э - время жизни электронов в p -области.

Укажем для примера, что в очень чистом германии при комнатных температурах τ может достигать нескольких миллисекунд, что соответствует L в несколько мм. При наличии примесей (или иных структурных дефектов) τи L могут уменьшаться на много порядков,


© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча