16.10.2019

Прямоугольный треугольник. Полный иллюстрированный гид (2019). Различные способы доказательства теоремы пифагора


ИЗМЕРЕНИЕ ПЛОЩАДЕЙ ГЕОМЕТРИЧЕСКИХ ФИГУР.

§ 58. ТЕОРЕМА ПИФАГОРА 1 .

__________
1 Пифагор - греческий учёный, живший около 2500 лет назад (564-473 гг. до нашей эры).
_________

Пусть дан прямоугольный треугольник, стороны которого а , b и с (черт. 267).

Построим на его сторонах квадраты. Площади этих квадратов соответственно равны а 2 , b 2 и с 2 . Докажем, что с 2 = а 2 + b 2 .

Построим два квадрата МКОР и М"К"О"Р" (черт. 268, 269), приняв за сторону каждого из них отрезок, равный сумме катетов прямоугольного треугольника АBС.

Выполнив в этих квадратах построения, показанные на чертежах 268 и 269, мы увидим, что квадрат МКОР разбился на два квадрата с площадями а 2 и b 2 и четыре равных прямоугольных треугольника, каждый из которых равен прямоугольному треугольнику АВС. Квадрат М"К"О"Р" разбился на четырёхугольник (он на чертеже 269 заштрихован) и четыре прямоугольных треугольника, каждый из которых также равен треугольнику АBС. Заштрихованный четырёхугольник - квадрат, так как стороны его равны (каждая равна гипотенузе треугольника АBС, т. е. с ), а углы - прямые / 1 + / 2 = 90°, откуда / 3 = 90°).

Таким образом, сумма площадей квадратов, построенных на катетах (на чертеже 268 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырёх равных треугольников, а площадь квадрата, построенного на гипотенузе (на чертеже 269 этот квадрат тоже заштрихован), равна площади квадрата М"К"О"Р", равного квадрату МКОР, без суммы площадей четырёх таких же треугольников. Следовательно, площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с 2 = а 2 + b 2 , где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Из формулы с 2 = а 2 + b 2 можно получить такие формулы:

а 2 = с 2 - b 2 ;
b
2 = с 2 - а 2 .

Этими формулами можно пользоваться для нахождения неизвестной стороны прямоугольного треугольника по двум данным его сторонам.
Например:

а) если даны катеты а = 4 см, b =3 см, то можно найти гипотенузу (с ):
с 2 = а 2 + b 2 , т. е. с 2 = 4 2 + 3 2 ; с 2 = 25, откуда с = √25 =5 (см);

б) если даны гипотенуза с = 17 см и катет а = 8 см, то можно найти другой катет (b ):

b 2 = с 2 - а 2 , т. е. b 2 = 17 2 - 8 2 ; b 2 = 225, откуда b = √225 = 15 (см).

Следствие: Если в двух прямоугольных треугольниках АВС и А 1 В 1 С 1 гипотенузы с и с 1 равны, а катет b треугольника АBС больше катета b 1 треугольника А 1 В 1 C 1 ,
то катет а треугольника АВС меньше катета а 1 треугольника А 1 В 1 C 1 . (Сделать чертёж, иллюстрирующий это следствие.)

В самом деле, на основании теоремы Пифагора получим:

а 2 = с 2 - b 2 ,
а 1 2 = с 1 2 - b 1 2

В записанных формулах уменьшаемые равны, а вычитаемое в первой формуле больше вычитаемого во второй формуле, следовательно, первая разность меньше второй,
т. е. а 2 < а 1 2 . Откуда а < а 1 .

Упражнения.

1. Пользуясь чертежом 270, доказать теорему Пифагора для равнобедренного прямоугольного треугольника.

2. Один катет прямоугольного треугольника равен 12 см, другой - 5 см. Вычислить длину гипотенузы этого треугольника.

3. Гипотенуза прямоугольного треугольника равна 10 см, один из катетов равен 8 см. Вычислить длину другого катета этого треугольника.

4. Гипотенуза прямоугольного треугольника равна 37 см, один из его катетов равен 35 см. Вычислить длину другого катета этого треугольника.

5. Построить квадрат, по площади вдвое больший данного.

6. Построить квадрат, по площади вдвое меньший данного. Указание. Провести в данном квадрате диагонали. Квадраты, построенные на половинах этих диагоналей, будут искомыми.

7. Катеты прямоугольного треугольника соответственно равны 12 см и 15 см. Вычислить длину гипотенузы этого треугольника с точностью до 0,1 см.

8. Гипотенуза прямоугольного треугольника равна 20 см, один из его катетов равен 15 см. Вычислить длину другого катета с точностью до 0,1 см.

9. Какой длины должна быть лестница, чтобы её можно было приставить к окну, находящемуся на высоте 6 м, если нижний конец лестницы должен отстоять от здания на 2,5 м? (Черт. 271.)

Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется так: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI в. до н.э.). Но изучение вавилонских клинописных таблиц и древних китайских рукописей (копий еще более древних манускриптов) показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетие до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

Вероятно, факт, изложенный в теореме Пифагора, был сначала установлен для равнобедренных прямоугольных треугольников. Достаточно взглянуть на мозаику из черных и светлых треугольников, изображенную на рис. 1, чтобы убедиться в справедливости теоремы для треугольника : квадрат, построенный на гипотенузе, содержит 4 треугольника, а на каждом катете построен квадрат, содержащий 2 треугольника. Для доказательства общего случая в Древней Индии располагали двумя способами: в квадрате со стороной изображали четыре прямоугольных треугольника с катетами длин и (рис. 2,а и 2,б), после чего писали одно слово «Смотри!». И действительно, взглянув на эти рисунки, видим, что слева свободна от треугольников фигура, состоящая из двух квадратов со сторонами и , соответственно ее площадь равна , а справа - квадрат со стороной - его площадь равна . Значит, , что и составляет утверждение теоремы Пифагора.

Однако в течение двух тысячелетий применяли не это наглядное доказательство, а более сложное доказательство, придуманное Евклидом, которое помещено в его знаменитой книге «Начала» (см. Евклид и его «Начала»), Евклид опускал высоту из вершины прямого угла на гипотенузу и доказывал, что ее продолжение делит построенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах (рис. 3). Чертеж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

В наши дни известно несколько десятков различных доказательств теоремы Пифагора. Одни из них основаны на разбиении квадратов, при котором квадрат, построенный на гипотенузе, состоит из частей, входящих в разбиения квадратов, построенных на катетах; другие - на дополнении до равных фигур; третьи - на том, что высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на два подобных ему треугольника.

Теорема Пифагора лежит в основе большинства геометрических вычислений. Еще в Древнем Вавилоне с ее помощью вычисляли длину высоты равнобедренного треугольника по длинам основания и боковой стороны, стрелку сегмента по диаметру окружности и длине хорды, устанавливали соотношения между элементами некоторых правильных многоугольников. С помощью теоремы Пифагора доказывается ее обобщение, позволяющее вычислить длину стороны, лежащей против острого или тупого угла:

Из этого обобщения следует, что наличие прямого угла в является не только достаточным, но и необходимым условием для выполнения равенства . Из формулы (1) следует соотношение между длинами диагоналей и сторон параллелограмма, с помощью которого легко найти длину медианы треугольника по длинам его сторон.

На основании теоремы Пифагора выводится и формула, выражающая площадь любого треугольника через длины его сторон (см. Герона формула). Разумеется, теорему Пифагора применяли и для решения разнообразных практических задач.

Вместо квадратов на сторонах прямоугольного треугольника можно строить любые подобные между собой фигуры (равносторонние треугольники, полукруги и т.д.). При этом площадь фигуры, построенной на гипотенузе, равна сумме площадей фигур, построенных на катетах. Другое обобщение связано с переходом от плоскости к пространству. Оно формулируется так: квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений (длины, ширины и высоты). Аналогичная теорема верна и в многомерном и даже бесконечномерном случаях.

Теорема Пифагора существует только в евклидовой геометрии. Ни в геометрии Лобачевского, ни в других неевклидовых геометриях она не имеет места. Не имеет места аналог теоремы Пифагора и на сфере. Два меридиана, образующие угол 90°, и экватор ограничивают на сфере равносторонний сферический треугольник, все три угла которого прямые. Для него , а не , как на плоскости.

С помощью теоремы Пифагора вычисляют расстояние между точками и координатной плоскости по формуле

.

После того как была открыта теорема Пифагора, возник вопрос, как отыскать все тройки натуральных чисел, которые могут быть сторонами прямоугольных треугольников (см. Ферма великая теорема). Они были открыты еще пифагорейцами, но какие-то общие методы отыскания таких троек чисел были известны еще вавилонянам. Одна из клинописных табличек содержит 15 троек. Среди них есть тройки, состоящие из настолько больших чисел, что не может быть и речи о нахождении их путем подбора.

ГИППОКРАТОВЫ ЛУНОЧКИ

Гиппократовы луночки - фигуры, ограниченные дугами двух окружностей, и притом такие, что по радиусам и длине общей хорды этих окружностей с помощью циркуля и линейки можно построить равновеликие им квадраты.

Из обобщения теоремы Пифагора на полукруги следует, что сумма площадей розовых луночек, изображенных на рисунке слева, равна площади голубого треугольника. Поэтому, если взять равнобедренный прямоугольный треугольник, то получатся две луночки, площадь каждой из которых будет равна половине площади треугольника. Пытаясь рещить задачу о квадратуре круга (см. Классические задачи древности), древнегреческий математик Гиппократ (V в. до н.э.) нашел еще несколько луночек, площади которых выражены через площади прямолинейных фигур.

Полный перечень гиппокраювых луночек был получен лишь в XIX-XX вв. благодаря использованию методов теории Галуа.

Теорема Пифагора – фундаментальная теорема евклидовой геометрии, которая постулирует соотношение катетов и гипотенузы прямоугольного треугольника. Это, пожалуй, самая популярная теорема в мире, известная каждому со школьной скамьи.

История теоремы

На самом деле, теория о соотношении сторон прямоугольного треугольника была известна задолго до Пифагора с острова Самос. Так, задачи о соотношении сторон встречаются в древних текстах периода правления вавилонского царя Хаммурапи, то есть за 1500 лет до рождения самосского математика. Заметки о сторонах треугольника зафиксированы не только в Вавилоне, но и Древних Египте и Китае. Одно из самых известных целочисленных соотношений катетов и гипотенузы выглядит как 3, 4 и 5. Эти числа использовались древними землемерами и зодчими для построения прямых углов.

Итак, Пифагор не изобретал теорему о соотношении катетов и гипотенузы. Он первым в истории доказал ее. Однако на этот счет существуют сомнения, так как доказательство самосского математика, если оно и было зафиксировано, утеряно в веках. Существует мнение, что доказательство теоремы, приведенное в «Началах» Евклида, принадлежит именно Пифагору. Впрочем, на этот счет у историков математики большие сомнения.

Пифагор был первым, но после него теорему о сторонах прямоугольного треугольника доказали около 400 раз, используя самые разные методики: от классической геометрии до дифференциального исчисления. Теорема Пифагора всегда занимала пытливые умы, поэтому среди авторов доказательств можно вспомнить , и президента США Джеймса Гарфилда.

Доказательства

В математической литературе зафиксировано не менее четырех сотен доказательств теоремы Пифагора. Такое умопомрачительное количество объясняется фундаментальным значением теоремы для науки и элементарностью результата. В основном пифагорова теорема доказывается геометрическими способами, наиболее популярными из которых являются метод площадей и метод подобий.

Самым простым методом доказательства теоремы, не требующим обязательных геометрических построений, является метод площадей. Пифагор заявил, что квадрат гипотенузы равен сумме квадратов катетов:

Попробуем доказать это смелое утверждение. Мы знаем, что площадь любой фигуры определяется при помощи возведения линейного сегмента в квадрат. Линейным сегментом может быть что угодно, но чаще всего это сторона фигуры или ее радиус. В зависимости от выбора сегмента и типа геометрической фигуры квадрат будет иметь различные коэффициенты:

  • единицу в случае с квадратом – S = a 2 ;
  • приблизительно 0,43 в случае с равносторонним треугольником – S = (sqrt(3)/4)a 2 ;
  • Пи в случае с кругом – S = pi × R 2 .

Таким образом, площадь любого треугольника мы можем выразить в виде S = F × a 2 , где F – некоторый коэффициент.

Прямоугольный треугольник – удивительная фигура, которую легко разделить на два подобных прямоугольных треугольника, всего лишь опустив перпендикуляр из любой вершины. Такое разделение превращает прямоугольный треугольник в сумму двух прямоугольных треугольников поменьше. Так как треугольники подобны, их площади вычисляются по одной и той же формуле, которая выглядит как:

S = F × гипотенуза 2

В результате разделения большого треугольника со сторонами a, b и c (гипотенуза) получились три треугольника, причем у меньших фигур гипотенузами оказались стороны изначального треугольника a и b. Таким образом, площади подобных треугольников вычисляются как:

  • S1 = F × c 2 – исходный треугольник;
  • S2 = F × a 2 – первый подобный треугольник;
  • S3 = F × b 2 – второй подобный треугольник.

Очевидно, что площадь большого треугольника равна сумме площадей подобных:

F × c 2 = F × a2 + F × b 2

Коэффициент F легко сократить. В итоге получаем:

c 2 = a 2 + b 2 ,

что и требовалось доказать.

Пифагоровы тройки

Выше уже упоминалось популярное соотношение катетов и гипотенуз как 3, 4 и 5. Пифагоровы тройки – это набор трех взаимно простых чисел, которые удовлетворяют условию a 2 + b 2 = c 2 . Таких комбинаций существует бесконечное количество, а первые из них использовались еще в древности для построения прямых углов. Завязывая определенное количество узлов на бечевке через равные промежутки и складывая ее в виде треугольника, древние ученые получали прямой угол. Для этого на каждой стороне треугольника требовалось завязать узлы, в количестве, соответствующем пифагоровым тройкам:

  • 3, 4, и 5;
  • 5, 12 и 13;
  • 7, 24 и 25;
  • 8, 15 и 17.

При этом любую пифагорову тройку можно увеличить в целое количество раз и получить пропорциональное соотношение, соответствующее условию теоремы Пифагора. К примеру, из тройки 5, 12, 13 можно получить значения сторон 10, 24, 26 простым умножением на 2. Сегодня пифагоровы тройки используются для быстрого решения геометрических задач.

Применение теоремы Пифагора

Теорема самосского математика используется не только в школьной геометрии. Пифагорова теорема находит применение в архитектуре, астрономии, физике, литературе, информационных технологиях и даже в оценке эффективности социальных сетей. Теорема применяется и в реальной жизни.

Выбор пиццы

В пиццериях перед покупателями часто возникает вопрос: взять одну большую пиццу или две поменьше? Допустим, можно купить одну пиццу диаметром 50 см или две пиццы поменьше, диаметром 30 см. На первый взгляд две пиццы поменьше – это больше и выгоднее, но не тут-то было. Как быстро сравнить площади приглянувшихся пицц?

Мы помним теорему самосского математика и пифагоровы тройки. Площадь круга – это квадрат диаметра с коэффициентом F = pi/4. А первая пифагорова тройка – это 3, 4 и 5, которую мы легко можем превратить в тройку 30, 40, 50. Следовательно 50 2 = 30 2 + 40 2 . Очевидно, что площадь пиццы с диаметром 50 см будет больше, чем сумма пицц с диаметрами по 30 см. Казалось бы, что теорема применима только в геометрии и только для треугольников, но на этом примере видно, что соотношение c 2 = a 2 + b 2 можно применять и для сравнения других фигур и их характеристик.

Наш онлайн-калькулятор позволяет вычислять любые значения, удовлетворяющие фундаментальному уравнению о сумме квадратов. Для расчета достаточно ввести 2 любых значения, после чего программа вычислит недостающее коэффициент. Калькулятор оперирует не только целыми, но и дробным значениями, поэтому для вычислений разрешается использовать любые числа, а не только пифагоровы тройки.

Заключение

Теорема Пифагора – фундаментальная вещь, которая находит широкое применение во многих научных приложениях. Используйте наш онлайн-калькулятор для подсчета величин значений, которые связаны выражением c 2 = a 2 + b 2 .


Теорема Пифагора

Своеобразна судьба иных теорем и задач... Как объяснить, например, столь исключительное внимание со стороны математиков и любителей математики к теореме Пифагора? Почему многие из них не довольствовались уже известными доказательствами, а находили свои, доведя за двадцать пять сравнительно обозримых столетий количество доказательств до нескольких сотен?
Когда речь идет о теореме Пифагора, необычное начинается уже с ее названия. Считается, что сформулировал ее впервые отнюдь не Пифагор. Сомнительным полагают и то, что он дал ее доказательство. Если Пифагор - реальное лицо (некоторые сомневаются даже в этом!), то жил он, скорее всего, в VI-V в. до н. э. Сам он ничего не писал, называл себя философом, что значило, в его понимании, «стремящийся к мудрости», основал пифагорейский союз, члены которого занимались музыкой, гимнастикой, математикой, физикой и астрономией. По-видимому, был он и великолепным оратором, о чем свидетельствует следующая легенда, относящаяся к пребыванию его в городе Кротоне: «Первое появление Пифагора пред народом в Кротоне началось речью к юношам, в которой он так строго, но вместе с тем и так увлекательно изложил обязанности юношей, что старейшие в городе просили не оставить и их без поучения. В этой второй речи он указывал на законность и на чистоту нравов, как на основы семейства; в следующих двух он обратился к детям и женщинам. Последствием последней речи, в которой он особенно порицал роскошь, было то, что в храм Геры доставлены были тысячи драгоценных платьев, ибо ни одна женщина не решалась более показываться в них на улице...» Тем не менее еще во втором столетии нашей эры, т. е. спустя 700 лет, жили и творили вполне реальные люди, незаурядные ученые, находившиеся явно под влиянием пифагорейского союза и относящиеся с большим уважением к тому, что согласно легенде создал Пифагор.
Несомненно также, что интерес к теореме вызывается и тем, что она занимает в математике одно из центральных мест, и удовлетворением авторов доказательств, преодолевших трудности, о которых хорошо сказал живший до нашей эры римский поэт Квинт Гораций Флакк: «Трудно хорошо выразить общеизвестные факты».
Первоначально теорема устанавливала соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника:
.
Алгебраическая формулировка:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b: a 2 +b 2 =c 2 . Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.
Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что
a 2 + b 2 = c 2 , существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Доказательства

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Через подобные треугольники

Следующее доказательство алгебраической формулировки - наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам.
Аналогично, треугольник CBH подобен ABC. Введя обозначения

получаем

Что эквивалентно

Сложив, получаем

или

Доказательства методом площадей

Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

Доказательство через равнодополняемость

1. Расположим четыре равных прямоугольных треугольника так, как показано на рисунке.
2. Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол - 180°.
3. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и внутреннего квадрата.



Что и требовалось доказать.

Доказательства через равносоставленность

Пример одного из таких доказательств указан на чертеже справа, где квадрат, построенный на гипотенузе, перестановкой преобразуется в два квадрата, построенных на катетах.

Доказательство Евклида

Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны. Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника - BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах. Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK. Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, - это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно, треугольники равны по двум сторонам и углу между ними. Именно - AB=AK,AD=AC - равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата - 90°). Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично. Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах.

Доказательство Леонардо да Винчи

Главные элементы доказательства - симметрия и движение.

Рассмотрим чертёж, как видно из симметрии, отрезок CI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки, мы усматриваем равенство заштрихованных фигур CAJI и GDAB. Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей квадратов, построенных на катетах, и площади исходного треугольника. С другой стороны, она равна половине площади квадрата, построенного на гипотенузе, плюс площадь исходного треугольника. Последний шаг в доказательстве предоставляется читателю.

1

Шаповалова Л.А. (ст. Егорлыкская, МБОУ ЕСОШ № 11)

1. Глейзер Г.И. История математики в школе VII – VIII классы, пособие для учителей, – М: Просвещение, 1982.

2. Демпан И.Я., Виленкин Н.Я. «За страницами учебника математики» Пособие для учащихся 5-6 классов. – М.: Просвещение, 1989.

3. Зенкевич И.Г. «Эстетика урока математики». – М.: Просвещение, 1981.

4. Литцман В. Теорема Пифагора. – М., 1960.

5. Волошинов А.В. «Пифагор». – М., 1993.

6. Пичурин Л.Ф. «За страницами учебника алгебры». – М., 1990.

7. Земляков А.Н. «Геометрия в 10 классе». – М., 1986.

8. Газета «Математика» 17/1996.

9. Газета «Математика» 3/1997.

10. Антонов Н.П., Выгодский М.Я., Никитин В.В., Санкин А.И. «Сборник задач по элементарной математики». – М., 1963.

11. Дорофеев Г.В., Потапов М.К., Розов Н.Х. «Пособие по математике». – М., 1973.

12. Щетников А.И. «Пифагорейское учение о числе и величине». – Новосибирск, 1997.

13. «Действительные числа. Иррациональные выражения» 8 класс. Издательство Томского университета. – Томск, 1997.

14. Атанасян М.С. «Геометрия» 7-9 класс. – М.: Просвещение, 1991.

15. URL: www.moypifagor.narod.ru/

16. URL: http://www.zaitseva-irina.ru/html/f1103454849.html.

В этом учебном году я познакомились с интересной теоремой, известной, как оказалось с древнейших времён:

«Квадрат, построенный на гипотенузе прямоугольного треугольника равновелик сумме квадратов построенных на катетах».

Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI век до н.э). Но изучение древних рукописей показало, что это утверждение было известно задолго до рождения Пифагора.

Я заинтересовались, почему в таком случае её связывают с именем Пифагора.

Актуальность темы: Теорема Пифагора имеет огромное значение: применяется в геометрии буквально на каждом шагу. Я считаю, что труды Пифагора до сих пор актуальны, ведь куда бы мы ни посмотрели, везде можно увидеть плоды его великих идей, воплощенные в различные отрасли современной жизни.

Целью моего исследования было: узнать, кто такой был Пифагор, и какое отношение он имеет к этой теореме.

Изучая историю теоремы, я решила выяснить:

Существуют ли другие доказательства этой теоремы?

Каково значение этой теоремы в жизни людей?

Какую роль сыграл Пифагор в развитии математики?

Из биографии Пифагора

Пифагор Самосский - великий греческий учёный. Его известность связана с названием теоремы Пифагора. Хотя сейчас уже мы знаем, что эта теорема была известна в древнем Вавилоне за 1200 лет до Пифагора, а в Египте за 2000 лет до него был известен прямоугольный треугольник со сторонами 3, 4, 5, мы по-прежнему называем её по имени этого древнего учёного.

Про жизнь Пифагора достоверно почти ничего неизвестно, но с его именем связано большое количество легенд.

Пифагор родился в 570 году до н.э на острове Самос.

Пифагор имел красивую внешность, носил длинную бороду, а на голове золотую диадему. Пифагор - это не имя, а прозвище, которое философ получил за то, что всегда говорил верно и убедительно, как греческий оракул. (Пифагор - «убеждающий речью»).

В 550 году до н.э Пифагор принимает решение и отправляется в Египет. Итак, перед Пифагором открывается неизвестная страна и неведомая культура. Многое поражало и удивляло Пифагора в этой стране, и после некоторых наблюдений за жизнью египтян Пифагор понял, что путь к знаниям, охраняемым кастой жрецов, лежит через религию.

После одиннадцати лет обучения в Египте Пифагор отправляется на родину, где по пути попадает в Вавилонский плен. Там он знакомится с вавилонской наукой, которая была более развита, чем египетская. Вавилоняне умели решать линейные, квадратные и некоторые виды кубических уравнений. Сбежав из плена, он не смог долго оставаться на родине из-за царившей там атмосферы насилия и тирании. Он решил переселиться в Кротон (греческая колония на севере Италии).

Именно в Кротоне начинается самый славный период в жизни Пифагора. Там он учредил нечто вроде религиозно-этического братства или тайного монашеского ордена, члены которого обязывались вести так называемый пифагорейский образ жизни.

Пифагор и пифагорейцы

Пифагор организовал в греческой колонии на юге Апенинского полуострова религиозно-этическое братство, типа монашеского ордена, который впоследствии назовут пифагорейским союзом. Члены союза должны были придерживаться определённых принципов: во-первых, стремиться к прекрасному и славному, во-вторых, быть полезными, в-третьих, стремиться к высокому наслаждению.

Система морально-этических правил, завещанная Пифагором своим ученикам, была собрана в своеобразный моральный кодекс пифагорейцев «Золотые стихи», которые пользовались большой популярностью в эпоху Античности, эпоху Средневековья и эпоху Возрождения.

Пифагорейская система занятий состояла из трёх разделов:

Учения о числах - арифметике,

Учения о фигурах - геометрии,

Учения о строении Вселенной - астрономии.

Система образования, заложенная Пифагором, просуществовала много веков.

Школа Пифагора много сделала, чтобы придать геометрии характер науки. Основной особенностью метода Пифагора было объединение геометрии с арифметикой.

Пифагор много занимался пропорциями и прогрессиями и, вероятно, подобием фигур, так как ему приписывают решение задачи: «По данным двум фигурам построить третью, равновеликую одной из данных и подобную второй».

Пифагор и его ученики ввели понятие о многоугольных, дружественных, совершенных числах и изучали их свойства. Арифметика как практика вычислений не интересовала Пифагора, и он с гордостью заявил, что «поставил арифметику выше интересов торговца».

Членами пифагорейского союза были жители многих городов Греции.

В своё общество пифагорейцы принимали и женщин. Союз процветал более двадцати лет, а потом начались гонения на его членов, многие из учеников были убиты.

О смерти самого Пифагора ходило много самых разных легенд. Но учение Пифагора и его учеников продолжало жить.

Из истории создания теоремы Пифагора

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что именно Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих «Начал». С другой стороны, Прокл утверждает, что доказательство в «Началах» принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных конкретных данных о жизни Пифагора и его математической деятельности.

Исторический обзор теоремы Пифагора начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:

«Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4».

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра.

Геометрия у индусов была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 8 века до нашей эры. Наряду с чисто ритуальными предписаниями, существуют и сочинения геометрически теологического характера. В этих сочинениях, относящихся к 4 или 5 веку до нашей эры, мы встречаемся с построением прямого угла при помощи треугольника со сторонами 15, 36, 39.

В средние века теорема Пифагора определяла границу, если не наибольших возможных, то, по крайней мере, хороших математических знаний. Характерный чертеж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора или человека цилиндре, в те времена нередко употреблялся как символ математики.

В заключение приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков.

Евклида эта теорема гласит (дословный перевод):

«В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол».

Как видим, в разных странах и разных языках существуют различные варианты формулировки знакомой нам теоремы. Созданные в разное время и в разных языках, они отражают суть одной математической закономерности, доказательство которой также имеет несколько вариантов.

Пять способов доказательства теоремы Пифагора

Древнекитайское доказательство

На древнекитайском чертеже четыре равных прямоугольных треугольника с катетами a, b и гипотенузой с уложены так, что их внешний контур образует квадрат со стороной a + b, а внутренний - квадрат со стороной с, построенный на гипотенузе

a2 + 2ab + b2 = c2 + 2ab

Доказательство Дж. Гардфилда (1882 г.)

Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого.

Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту

C другой стороны, площадь трапеции равна сумме площадей полученных треугольников:

Приравнивая данные выражения, получаем:

Доказательство простейшее

Это доказательство получается в простейшем случае равнобедренного прямоугольного треугольника.

Вероятно, с него и начиналась теорема.

В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.

Например, для треугольника АВС: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по два. Теорема доказана.

Доказательство древних индусов

Квадрат со стороной (a + b), можно разбить на части либо как на рис. 12. а, либо как на рис. 12, б. Ясно, что части 1, 2, 3, 4 на обоих рисунках одинаковы. А если от равных (площадей) отнять равные, то и останутся равные, т.е. с2 = а2 + b2.

Доказательство Евклида

В течение двух тысячелетий наиболее распространенным было доказательство теоремы Пифагора, придуманное Евклидом. Оно помещено в его знаменитой книге «Начала».

Евклид опускал высоту BН из вершины прямого угла на гипотенузу и доказывал, что её продолжение делит достроенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах.

Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

Применение теоремы Пифагора

Значение теоремы Пифагора состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии и решить множество задач. Кроме этого, практическое значение теоремы Пифагора и обратной ему теоремы заключается в том, что с их помощью можно найти длины отрезков, не измеряя самих отрезков. Это как бы открывает путь от прямой к плоскости, от плоскости к объемному пространству и дальше. Именно по этой причине теорема Пифагора так важна для человечества, которое стремится открывать все больше измерений и создавать технологии в этих измерениях.

Заключение

Теорема Пифагора настолько известна, что трудно представить себе человека, не слышавшего о ней. Я узнала, что существует несколько способов доказательства теоремы Пифагора. Я изучила ряд исторических и математических источников, в том числе информацию в Интернете, и поняла, что теорема Пифагора интересна не только своей историей, но и тем, что она занимает важное место в жизни и науке. Об этом свидетельствуют приведённые мной в данной работе различные трактовки текста этой теоремы и пути её доказательств.

Итак, теорема Пифагора - одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни смотри на прямоугольный треугольник, никак не увидишь, что между его сторонами есть простое соотношение: c2 = a2 + b2. Поэтому для её доказательства часто используют наглядность. Заслуга же Пифагора состояла в том, что он дал полноценное научное доказательство этой теоремы. Интересна личность самого учёного, память о котором неслучайно сохранила эта теорема. Пифагор - замечательный оратор, учитель и воспитатель, организатор своей школы, ориентированной на гармонию музыки и чисел, добра и справедливости, на знания и здоровый образ жизни. Он вполне может служить примером для нас, далёких потомков.

Библиографическая ссылка

Туманова С.В. НЕСКОЛЬКО СПОСОБОВ ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ ПИФАГОРА // Старт в науке. – 2016. – № 2. – С. 91-95;
URL: http://science-start.ru/ru/article/view?id=44 (дата обращения: 21.02.2019).

© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча