17.04.2021

Определение индивидуального риска. Понятие рисков. Групповой и индивидуальный риск Критерии индивидуального риска


Летальному исходу и инвалидности.

2. Сравните полученные значения с социально приемлемым риском.

3. Определите вероятное количество травмированных на предприятии, на котором Вы работаете.
Решение:

Профессиональный риск – вероятность повреждения здоровья работников в результате воздействия опасных и вредных факторов. При реализации опасных факторов возможны травмы, а при воздействии вредных факторов – заболевание вследствие кумулятивного накопления вредных факторов в организме человека.

Последствием воздействия на работающего опасных и вредных факторов может быть: временная нетрудоспособность; инвалидность; летальный исход.

Риск гибели человека на производстве за год:
R  ,
где n – количество погибших на производстве за год,

N – общая численность работающих.

Для определения риска по травматизму, летальному исходу и инвалидности рассчитаем некоторые дополнительные показатели.

Численность работающего населения:

N раб =N- N пен - N дет
где N - общее количество населения страны, чел.;

N пен – общее количество пенсионеров в стране, чел.;

N дет – общее количество детей в стране, чел.

Численность пенсионеров в стране, N пен:

N пен = =32250000 чел.

Численность детей в стране, N дет:

N дет = =33750000 чел.

N раб =150000000 – 32250000 – 33750000 = 84000000 чел.

Риск по травматизму:

R тр  =4,8∙10 -3

Риск по летальному исходу:

R лет  =1,2∙10 -4

Риск по инвалидности:

R инв  =1,8∙10 -4

Условия профессиональной деятельности по риску гибели человека на производстве ориентировочно разделяют на четыре категории безопасности:

Нормально безопасные R 10 -4 ;

Опасные 10 -4  R  10 -3 ;

Критические 10 -3  R  10 -2 ;

Аварийные.

Таким образом, риск по травматизму относится к критической категории; риск по летальному исходу относится к опасной категории; риск по инвалидности относится к опасной категории.

Приемлемый риск – минимальный, который может быть достигнут из реальных экономических, технических и экологических возможностей. В развитых странах приемлемый риск гибели человека установлен в законодательном порядке и составляет R10 -6 в год – так называемый социально-приемлемый риск. Пренебрежимо малым считается риск 110 -8 в год.

Риск по травматизму:

4,8∙10 -3  10 -6

Риск по летальному исходу:

1,2∙10 -4  10 -6

Риск по инвалидности:

1,8∙10 -4  10 -6

Следовательно, значения рисков превышают допустимый уровень социально-приемлемого риска.

Определим вероятное количество травмированных на предприятии.

Воспользуемся формулой для определения риска, чтобы определить вероятное число травмированных на предприятии.

Откуда, n = R × N.

Риск по травматизму в стране составляет R тр  4,8∙10 -3 .

Численность работников предприятия равна 10000 чел.

Тогда вероятное число травмированных на предприятии:

n = 4,8∙10 -3 × 10000 = 48 чел.

По результатам расчетов вероятное количество травмированных на предприятии составляет 48 чел.

Задание 2

Оценка индивидуального риска различных видов транспорта
В таблице 2.1 приведены статистические данные индивидуального риска с летальным исходом за год в стране.


Причина

Риск,

Автомобильный транспорт

3∙10 -4

Железнодорожный транспорт

4∙10 -7

Водный транспорт

9∙10 -6

Воздушный транспорт

9∙10 -6

Падение

9∙10 -5

Утопление

3∙10 -5

Пожар (ожог)

4∙10 -5

Электрический ток

6∙10 -6

1.Определите количество погибших N 0 в стране за год, используя данные таблицы 2.1.

2. Сравните данные и выделите наиболее безопасный вид транспорта.

3. Определите количество пострадавших при пожаре в бытовых условиях. Как показывает статистика, число этих жертв составляет до 80 % от общего числа погибших.
Решение:
Риск травмирования или летального исхода человека, выполняющего в течение года определенную работу, можно выразить формулой:
R  ,
где N 0 – число неблагоприятных событий , например, несчастных случаев, число пострадавших или погибших;

N – общее количество людей.

Общая численность работающих в стране по данным задачи 1 N раб =84000000 чел. Выразим из формулы риска количество погибших:
N 0 = R × N раб.
Проведем соответствующие расчеты, результаты представим в таблице 2.2.
Таблица 2.2 – Расчет количества погибших


Причина

Риск, R

Общая численность работающих в стране, N раб, чел.

Количество погибших, N0, чел.

1

2

3

4

Автомобильный транспорт

3∙10 -4

84000000

25200

Железнодорожный транспорт

4∙10 -7

84000000

34

Водный транспорт

9∙10 -6

84000000

756

Воздушный транспорт

9∙10 -6

84000000

756

Падение

9∙10 -5

84000000

7560

Утопление

3∙10 -5

84000000

2520

Пожар (ожог)

4∙10 -5

84000000

3360

Электрический ток

6∙10 -6

84000000

504

Таким образом, наиболее безопасным видом транспорта является железнодорожный вид транспорта: он имеет наименьшее значение риска гибели (R=4∙10 -7), а также на данном виде транспорта в рассматриваемом году погибло наименьшее количество человек (34 чел.).

Наиболее опасным видом транспорта в рассматриваемом периоде является автомобильный транспорт. Число погибших составило 25200 чел.

Количество пострадавших при пожаре в бытовых условиях составило:

3360 × 80 / 100 = 2688 чел.

Задание 3

Оценка ветровой нагрузки, формирующей опасные условия жизнедеятельности
Влияние ветровой нагрузки определяется силой (скоростью) ветра (табл. 3.1), направленностью (роза ветров) и продолжительностью.
Таблица 3.1. Характерные признаки ветровой нагрузки – шкала Бофорта


Баллы

Словесное определение силы ветра

Средняя скорость ветра, м/с

Характерные признаки ветровой нагрузки

0

Штиль

0-0,2

Безветрие. Дым поднимается вертикально, листья деревьев неподвижны

1

Тихий

0,3-1,5

Направление , но не по флюгеру

2

Легкий

1,6-3,3

Движение ветра ощущается лицом, шелестят листья, приводится в движение флюгер

3

Слабый

3,4-5,4

Листья и тонкие ветви деревьев все время колышутся, ветер развевает легкие флаги

4

Умеренный

5,5-7,9

Ветер поднимает пыль и мусор, приводит в движение тонкие ветви деревьев

5

Свежий

8,0-10,7

Качаются тонкие стволы деревьев, движение ветра ощущается рукой

6

Сильный

10,8-13,8

Качаются толстые сучья деревьев , гудят телеграфные провода

7

Крепкий

13,9-17,1

Качаются стволы деревьев

8

Очень крепкий

17,2-20,7

Ветер ломает сучья деревьев, идти против ветра очень трудно

9

Шторм

20,8-24,4

Небольшие повреждения, ветер начинает разрушать крыши зданий

10

Сильный шторм

24,5-28,4

Значительные разрушения строений, ветер вырывает деревья с корнем

11

Жестокий шторм

28,5-32,6

Большие разрушения на значительном пространстве. Наблюдается очень редко.

12

Ураган

> 32,6

Каждый регион имеет свои характерные среднестатистические и максимальные ветровые нагрузки, при которых действуют запреты на отдельные виды работ (табл. 3.2).
Таблица 3.2. Запрещения и ограничения по отдельным видам работ при ветровых нагрузках


№ п/п

Сила ветра

Ограничения

1

Более 3 м/с

Химическая обработка лесопосадок , питомников

2

Более 10 м/с

Погрузочно-разгрузочные работы. Перемещение и установка вертикальных панелей с большой парусностью

3

Более 11 м/с

Лесохозяйственные и лесозаготовительные работы (рубка леса, заготовка семян и шишек, изыскательская работа и т.д.)

4

Более 15 м/с

Таблица 3.3. Исходные данные для расчета (вариант 3)

Рассчитайте вероятность реализации события R (А).

Определите силу ветра в баллах по шкале Бофорта.

Из табл. 3.1 и 3.2 выпишите: характерные опасности среды обитания; уровни опасности среды обитания; запреты на выполнение отдельных видов работ. Результаты представьте в виде таблицы 3.4.
Таблица 3.4


Расчет и выводы

Событие



Вероятность

Уровень опасности

Баллы

Запрет на работы

A 1

1-3 м/с


A 2

8-12 м/с


A 3

18-22 м/с


A 4

более 30 м/с


A 5

более 60 м/с


Решение:

1. Рассчитаем вероятность реализации события R (А).

Риск ветровых нагрузок за год определяется количеством дней N 0 с определенной силой ветра (A 1 , A 2 , A 3 , A 4 , A 5) к общему количеству дней в году N  365:
, i=1,2,3,4,5
R(А) 1 = = 0,055

R(А) 2 = = 0,274

R(А) 3 = = 0,027

R(А) 4 = = 0,014

Для дальнейшей характеристики ветровой нагрузки определим среднюю скорость ветра, м/с.

А 1 = = 2 м/с

А 2 = = 10 м/с

А 3 = = 20 м/с

А 4 = = 45 м/с

Определим силу ветра в баллах по шкале Бофорта, из табл. 3.1 и 3.2 выпишем: характерные опасности среды обитания, уровни опасности среды обитания, запреты на выполнение отдельных видов работ. Все данные представим в таблице 3.5 по форме таблицы 3.4.
Таблица 3.5


Расчет и выводы

Событие

Количество дней N 0 ветровой нагрузки в году

Вероятность

Уровень опасности

Баллы

Запрет на работы

A 1

1-3 м/с


20

0,055

Легкий

2

Химическая обработка лесопосадок, питомников

A 2

8-12 м/с


100

0,274

Свежий

5

Погрузочно-разгрузочные работы.

Перемещение и установка вертикальных панелей с большой парусностью


A 3

18-22 м/с


10

0,027

Очень крепкий

8

Монтажные работы на высоте в открытых местах. Кровельные

работы. Кладка кирпичных труб. Выход в открытые водные пространства (море, озеро и т.д.). Восхождение в горах


A 4

более 30 м/с


5

0,014

Ураган

12

Монтажные работы на высоте в открытых местах. Кровельные работы. Кладка кирпичных труб. Выход в открытые водные пространства (море, озеро и т.д.). Восхождение в горах

A 5

более 60 м/с


-

-

-

-

-

Максимальная сила ветра (событие A 4) равна 45 м/с при риске R(А) 4 =0,014;

Наиболее вероятная сила ветра в регионе (событие A 2) равна 10 м/с (5 баллов), риск события R(А) 2 =0,274.

При наиболее вероятной силе ветра в регионе запрещено выполнять: погрузочно-разгрузочные работы; перемещение и установку вертикальных панелей с большой парусностью.

Список использованных источников


  1. Безопасность жизнедеятельности: Учебник для вузов / С.В. Белов, В.А. Девисилов, А.В. Ильницкая, и др.; Под общей редакцией С.В. Белова.- 8-е издание, стереотипное - М.: Высшая школа, 2009. - 616 с.

  2. Вишняков, Я.Д. Безопасность жизнедеятельности. Теория и практика: Учебник для бакалавров / Я.Д. Вишняков. - Люберцы: Юрайт, 2015. - 543 c.

  3. Косолапова, Н.В. Безопасность жизнедеятельности: Учебник / Н.В. Косолапова, Н.А. Прокопенко. - М.: КноРус, 2013. - 192 c.

  4. Маринченко, А.В. Безопасность жизнедеятельности: Учебное пособие / А.В. Маринченко. - М.: Дашков и К, 2013. - 360 c.

  5. Мастрюков, Б.С. Безопасность в чрезвычайных ситуациях. – Изд. 5-е, перераб.- М.: Академия, 2008.- 334 с.

  6. Михнюк, Т.Ф. Безопасность жизнедеятельности / Т.Ф. Михнюк. – Минск: ИВЦ Минфина, 2015. – 341 с.

  7. Сапронов, Ю.Г. Безопасность жизнедеятельности / Ю.Г. Сапронов. М.: Б. изд., 2012. – 336 с.

  8. Соломин, В. П. Безопасность жизнедеятельности: учебник для вузов/ Л.А. Михайлов, В.П. Соломин, Т.А. Беспамятных; под ред. Л.А. Михайлова. – СПб.: Питер, 2013. – 461 с.

Введение понятия «индивидуальный риск» и появление количественных значений этого показателя создало предпосылки для установления некоторых «пороговых» значений, т.е. величин приемлемого индивидуального риска. Установление определенных нормативов приемлемого риска получило название нормирования рисков . На этой основе возникла и другая процедура, тесно связанная с оцениванием риска – анализ риска , суть которой состоит в сравнении полученных оценок риска (численных значений) с соответствующими показателями приемлемых значений.

Количественные оценки риска являются объективными показателями опасности промышленных объектов. Однако возникает вопрос, что считать приемлемым риском? Для этого, прежде всего, приемлемую величину каждого вида риска необходимо обосновать. Так, приемлемую величину индивидуального риска смерти людей в результате общих заболеваний возможно установить равной 5·10 -4 1/год. Эта величина соответствует данным ВОЗ, согласно которым в современном мире практически невозможно предотвратить 5 смертей от общих заболеваний на каждые 10 000 человек в возрасте до 30 лет. С таким риском общество вынуждено соглашаться, поскольку затраты на его снижение на современном уровне развития признаны нецелесообразными. Либо, по меньшей мере, необходимо выполнение большого объема фундаментальных и ресурсоемких исследований, направленных на снижение уровня заболеваемости.

После принятия мировым сообществом концепции приемлемого риска начался этап ее реализации. Степень внедрения этой концепции в практическую деятельность сегодня различна в разных странах и в некоторых из них введена в законодательство. Например, в Нидерландах эта концепция уже в 1985 г. была принята парламентом страны в качестве государственного закона. Согласно этому закону, для предельно допустимого уровня индивидуального риска, обусловленного хозяйственной деятельностью, принято значение риска смерти, равное 10 -6 1/год.

Интересен механизм определения величины 10 -6 , ставшей определенным эталоном нормирования рисков различных видов. За основу был принят риск смерти индивидуума в возрасте 10 – 15 лет, который согласно статистическим данным по возрастной смертности в Нидерландах составляет примерно 10 -4 1/год и является минимальным на протяжении всей его жизни. Отметим для сравнения, что максимальный риск смерти для человека соответствует первому году его жизни и равен 2·10 -2 1/год. В Нидерландах, основываясь на этих данных, в качестве предельно допустимого максимального уровня индивидуального риска принято значение, которое составляет 1% от риска смерти в возрастном интервале от 10 до 15 лет, т.е. 10 -6 1/год. Иными словами, вероятность гибели человека в течение года не должна превышать одного шанса из миллиона. Для сравнения можно привести некоторые дан-ные статистики: риск смерти человека, равный 10 -6 1/год, соответствует рис-ку, которому он подвергается в течение своей поездки на автомобиле на рас-стояние в 100 км или в полете на самолете на расстояние 650 км, или, если он выкуривает 3/4 сигареты, или в течение 15 мин занимается альпинизмом и т.д. .



Уровень пренебрежимого риска в Нидерландах был принят исходя из условия, что его показатель должен составлять также 1% от предельно допустимого, т.е. 10 -8 1/год. Приемлемый уровень риска выбирается в диапазоне от 10 -8 до 10 -6 1/год, исходя из социальных и экономических причин. Та-ким образом, между двумя этими уровнями находится область, в которой нужно последовательно уменьшать риск, отыскивая компромисс между социальной выгодой и финансовыми расходами, связанными с повышением безопасности.

Проблемы контроля и уменьшения риска решаются в Нидерландах настолько активно и последовательно, насколько это возможно при современном уровне знаний. Это государство можно рассматривать как пример страны, где наиболее широко используются методы оценки и анализа риска в практической деятельности по обеспечению промышленной безопасности. При этом эксперты и рискменеджеры поставили своей задачей определять риск всесторонне. В этих целях учитываются показатели индивидуального, социального и экологического риска. Первый из них задается вероятностью гибели отдельного человека, второй – соотношением между количеством людей, которые могут погибнуть при одной аварии, и вероятностью такой аварии, а третий – процентом биологических видов экосистем, на которых скажется вредное воздействие. При этом максимальным приемлемым уровнем риска для экосистем считается такой, при котором может пострадать 5% видов биогеоценозов.

В других странах масштабы использования концепции приемлемого риска в законодательстве более ограничены, но во всех странах существует тенденция к ее более полному применению. В странах Европейского союза (ЕС) сложились различные подходы к установлению критериев индивиду-ального риска для населения, проживающего вблизи ОПО. Классификация этих критериев может быть представлена в следующем виде :

1. Критерии риска, определяющие цель и целевые показатели, но не средства обеспечения безопасности (Великобритания).

2. Предписывающие критерии риска, устанавливающие максимальный уровень риска для его контроля, при этом подходы к уменьшению риска имеют рекомендательный характер (Нидерланды, Венгрия, Чешская республика).

3. Предписывающие критерии, которые основаны на установленном государством (не максимальном) уровне риска для его контроля (Франция) или определяющие недопустимость риска, источником которого является ОПО, вне его границ, т.е. ограничение риска со стороны ОПО пределами его территории (Германия).

Несмотря на методологические различия в формулировках критериев нормирования индивидуального риска, существует единая Директива ЕС (Севезо-2) по управлению безопасностью химических объектов при крупных авариях, которая применяется каждым государством – членом ЕС. При этом верхняя граница (предельно допустимый уровень) индивидуального риска для стран ЕС принят равным 10 -5 1/год.

В России в последние годы также активно используется методический аппарат количественного анализа индивидуального риска в различных областях. Однако до настоящего времени на государственном уровне не установлены информативные значения, опираясь на которые можно осуществлять эффективную политику менеджмента риска с применением различных механизмов регулирования и контроля. В одной из первых работ в этой области, выполненной под руководством А.Н. Елохина , обоснованы критерии приемлемости индивидуального риска с учетом амортизационного износа основного технологического оборудования и анализа аварийности в промышленности РФ. Предложены следующие уровни риска для населения (для одного человека в год) и соответствующие этим уровням зоны контроля риска:

а) для территорий вблизи существующих ОПО уровень риска:

Более 10 -4 – зона недопустимого риска,

Менее 10 -4 , но более 10-5 – зона жесткого контроля риска,

Менее 10 -5 – зона приемлемого риска;

б) для территории вблизи нового строительства уровень риска должен быть снижен для каждой зоны на порядок.

Приведенным названиям зон соответствуют следующие описания:

1-я зона – зона недопустимого риска – это территория, где необходимо либо проводить соответствующий комплекс мероприятий, либо не допускать нахождение людей в этой зоне. Под комплексом мероприятий понимаются мероприятия, обеспечивающие снижения риска и проводимые либо на самом объекте (изменение технологических процессов, уменьшение запасов опасных веществ, введение дополнительных систем контроля и т.д.), либо вне его (улучшение организации экстренной медицинской помощи, обучение населения и т.д.). Для нового строительства в таких зонах вообще не следует предусматривать нахождение людей, не связанных непосредственно с обслуживанием технологического оборудования и производственных процессов на объекте.

2-я зона – зона жесткого контроля риска . В этой зоне должны выполняться следующие требования:

Нахождение в зоне ограниченного числа людей в течение ограниченного отрезка времени (например, один – два объекта с наибольшей работающей сменой до 100 чел.);

Персонал таких объектов должен быть хорошо обучен и готов к проведению защитных мероприятий в случае крупной производственной аварии на потенциально опасном объекте;

В зоне должна быть отработана система оповещения, позволяющая в кратчайшие сроки осуществить мероприятия по защите производственного персонала;

Объект, находящийся в такой зоне, сам не должен являться потенциально опасным, поддерживающим эффект «домино», и не должен использовать непрерывные технологические процессы.

3-я зона – зона приемлемого риска – это территория, где допускается любое строительство и размещение населения.

Исходя из уровня социально-экономического развития Российской Федерации и на основании существующего мирового опыта, Российским научным обществом анализа риска в 2006 г. принята Декларация об установлении предельно допустимого уровня индивидуального риска смерти, а также уровня социального риска. Предложенные нормативы носят рекомендательный и целеориентированный характер, отражают специфику промышленного объекта, а также характер опасного воздействия (рис. 10.2).

техногенного риска

Для потенциально опасных производственных объектов России установлен предельно допустимый уровень индивидуального риска в диапазоне 10 -4 –10 -5 смертей в год в качестве общего федерального норматива. Указанный норматив дифференцирован в зависимости от специфики промышленных объектов – источников опасности и характера их опасного воздействия на население. Эта дифференциация отражает следующие показатели предельно допустимого уровня индивидуального риска смерти, являющиеся частными федеральными нормативами:

а) по критерию новизны промышленного объекта (за исключением специаль-ных объектов):

Не более 10 -5 1/год – для новых (вновь проектируемых) объектов,

Не более 10 -4 1/год – для действующих объектов;

б) по критерию комбинированности опасного воздействия:

Не более 10 -5 1/год – для систематического воздействия вредных факторов на здоровье населения,

Не более 10 -4 1/год – для совместного (комбинированного) систематического воздействия различных вредных факторов на здоровье населения.

Коллективный риск

Показатель потенциального риска, как мы установили, определяет величину и основу пространственного распределения опасности – частоты реализации аварий (либо негативных воздействий определенного уровня) в виде вероятностных зон поражения. Величина индивидуального риска учитывает вероятность последствий этих событий для одного человека, т.е. смерти либо потери здоровья (летальный и нелетальный исходы) индивидуума. Однако опасные события могут оказывать воздействие на группу людей и тогда последствия определяются количеством пострадавших . Следовательно, необходим учет количества людей, находящихся в вероятностных зонах поражения. Данная величина может быть охарактеризована распределением персонала (или населения) на рассматриваемой территории и для произвольного момента времени также является вероятностной величиной.

Количеством пострадавших, в соответствии с принятой терминологией при классификации ЧС, является число людей, погибших и/или получивших в результате ЧС ущерб здоровью. На языке военных специалистов это понятие часто звучит как сумма безвозвратных и санитарных потерь. Вместе с тем показатель коллективного риска в частных случаях должен оговаривать тяжесть последствий, поскольку термин «здоровье человека» в целом отражает не только отсутствие болезней или инвалидности, но и, как мы уже говорили, состояние физического, психического и социального благополучия. Известно, что в результате таких техногенных аварий и катастроф, как крушения самолетов, которые очень тяжело воспринимаются обществом, помощь психологов необходима многим людям.

Таким образом, показатель «коллективный риск» в отличие от риска индивидуального, является интегральной мерой опасности, отражающей масштаб ожидаемых последствий для людей в результате потенциальных аварий или других негативных воздействий.

Вероятность реализации события-аварии рА за рассматриваемый период времени t связана с частотой реализации этого события λА и может быть представлена в общем виде:

поэтому коллективный риск является, по сути, математическим ожиданием дискретной случайной величины людских потерь n и может быть рассчитан в виде:

где i = 1…k – число расчетных сценариев возникновения и развития аварии, при которых возможны людские потери; pi – вероятность реализации i -го сценария аварии; ni – значение величины людских потерь (общих либо пострадавших в определенной степени) при реализации i -го сценария аварии.

Прогноз количества пострадавших в оцениваемой группе, когда статистические данные отсутствуют, можно выполнить с помощью математических моделей, например, по формуле:

, чел., (5.8)

где M [NA ] – математическое ожидание числа случайных событий-аварий на рассматриваемой территории; SЗП – средняя площадь зоны поражения при реализации события-аварии (или ее фактора), км2/событие; П – средняя плот-ность населения в районе возможных опасных событий, чел/км2.

Коллективный риск может быть выражен посредством индивидуального риска, например, вблизи ОПО:

, (5.9)

где S – область интегрирования, обычно площадь территории, км2;

N(x,y) – плотность распределения населения и (или) персонала по территории, прилегающей к опасному объекту, чел./км 2 .

Расчет показателя коллективного риска при известной величине индивидуального риска в общем виде может быть выполнен по формуле:

Чел/год, (5.10)

где N – число людей, подверженных рассматриваемой опасности (опасному фактору), чел.

Поскольку коллективный риск характеризует масштаб опасности, этот показатель риска часто используется в следующих целях:

Оценки и сравнения различных территорий по уровню опасности;

Оценки и сравнения отдельных событий по уровню опасности;

Оценки уровня опасности для отдельных групп людей, коллективов, экипажей, объединенных выполнением общих целей (рабочих и служебных обязанностей), местом проживания и т.д.

Различия в рассмотренных показателях риска (потенциальный, индивидуальный, коллективный) можно проиллюстрировать на таком примере. Вблизи источника постоянной опасности (ОПО) расположено здание учреждения, где в течение рабочего дня находится 100 сотрудников, а в остальное время суток – 2 охранника. Потенциальный риск территории (в данном случае – помещений) будет определяться степенью опасности в каждом из них, и, предположим, он одинаков. Индивидуальный риск не зависит от числа присутствующих в здании и будет также одинаков для каждого из сотрудников и охранников при равном времени пребывания в здании. Однако коллективный риск за определенный промежуток времени (к примеру, год) для группы сотрудников и группы охранников будут существенно отли-чаться. Несложно подсчитать, что в первом случае он будет в 50 раз выше.

Пример 4.1. Численность пострадавших в 2007 г. в России при несчастных случаях на производстве со смертельным исходом составила n = 2985 чел. Определите индивидуальный риск гибели человека на производстве, если численность работающих в стране составляла примерно N = 74 млн. чел. Определите величину коллективного риска в организации, насчитывающей n1 = 500 работающих.

Последовательность расчета:

1. Индивидуальный риск гибели человека на производстве составит:

,1/год

2. Прогнозируемый коллективный риск для работников организации будет равен:

, чел./год.

Социальный риск

Существующая в области промышленной безопасности и принятая к рассмотрению система показателей риска (индивидуальный, коллективный, социальный, технический, экологический) учитывает воздействия, возникающие при реализации опасностей на определенные объекты. Таким объектом воздействия, т.е. сферой приложения социального риска, являются группы людей либо их интересы (в этом его сходство с коллективным риском), а также сообщества людей или общество в целом. В этом состоит первый признак социального риска – масштабность.

Вторым признаком социального риска является вид и степень тяжести негативных последствий. Этот показатель риска учитывает не только гибель, травмы и болезни людей, пострадавших в результате аварий, катастроф и ЧС. Социальный риск может принимать во внимание экономические и социальные потери (ущерб) в случае нарушения процесса нормальной жизнедеятельности, а также вследствие изменений в окружающей человека среде (социальной и природной) при реализации опасности.

Социальный ущерб населению и территории состоит в отрицательном влиянии на физическое, материальное и моральное состояние людей. К числу социальных последствий могут быть отнесены генетические отклонения у людей, обусловленные загрязнением окружающей среды мутагенами, вызывающими наследственные изменения в хромосомах и генах. Социальные последствия оказывают существенное влияние на демографическую ситуацию в стране, выражающуюся в снижении численности населения в районах бедствия за счет вынужденных переселенцев из этих районов, в изменении профессиональной структуры населения, его возрастного состава и т.д. Социальные и другие последствия могут негативно сказываться на реализации социальных и экономических программ, тем самым снижая экономические возможности государства. Анализ последствий крупных аварий и катастроф показывает, что затраты на их ликвидацию, создание приемлемых условий для жизнедеятельности населения могут существенно влиять на социально-экономическое развитие государства.

Основные источники социального риска и соответствующие им факторы приведены в табл. 5.2.

Таблица 5.2 – Основные источники и факторы социального риска

Источник социального риска Наиболее распространенные факторы социального риска
Промышленные технологии и опасные промышленные объекты Транспортные аварии и катастрофы. Аварии на АЭС, ТЭС, химических комбинатах, продуктопроводах и т.п. Техногенное загрязнение окружающей среды
Системы жизнеобеспечения населения Аварии на электростанциях и электроэнергетических системах. Аварии на тепловых сетях, системах газо- и водоснабжения, бытовых газовых приборов
Урбанизация экологически неустойчивых территорий Поселение людей в зонах возможного затопления, образования оползней, селей, ландшафтных пожаров, повышенной сейсмичности региона
Социальные и военные конфликты Боевые действия. Применение оружия массового поражения
Эпидемии Распространение вирусных заболеваний
Снижение качества жизни Безработица, голод, нищета. Ухудшение медицинского обслуживания. Низкое качество продуктов питания. Неудовлетворительные жилищно-бытовые условия

Известно, что вероятность летального исхода при различных видах про-

фессиональной деятельности составляет (0,2 – 3)·10 -7 чел/ч, в среднем – 0,7·10 -7 чел/ч, при занятиях домашним хозяйством – 0,5·10 -7 чел/ч.

Помимо индивидуального, различают также социальный риск, который характеризует вероятность поражения определенного числа людей при реализации той или иной опасности. Он определяет масштаб катастрофичности опасности.

В практических целях, в частности для обоснования профилактических мероприятий, важно знать фактические и расчетные (прогнозируемые) значения рисков. Фактические значения различных рисков могут быть вычислены по статистическим данным о несчастных случаях, заболеваниях, авариях, пожарах, стихийных бедствиях. Если в какой-либо стране от всех видов опасностей погибло C человек, а все население составляло H , то индивидуальный риск гибели R общ от всех опасностей составит

R общ = X / H. (1.1)

Если рассматривать, только производственную деятельность, то риск гибели на производстве будет

R пр = X пр / P, (1.2)

гдеX пр – число погибших во всех отраслях народного хозяйства; P – общее число работников.

Важно отметить, что R пр обычно значительно меньше R общ.

Для отдельных отраслей экономики имеем

R отр = X отр / P отр, (1.3)

где X отр и P отр соответственно число погибших и число работников в рассматриваемой отрасли.

Основываясь на значениях R общ, R пр, R отр , можно решать многие вопросы управления безопасностью жизнедеятельности: обосновывать объемы ассигнований на цели повышения безопасности, устанавливать уровень требований безопасности через соответствующие нормативные правовые акты (стандарты, правила, нормы), размеры страховых ставок при страховании работников от несчастных случаев на производстве и профессиональных заболеваний. Вместе с тем наиболее эффективное управление риском достигается через изменения, вносимые в технику и технологии на стадии разработки соответствующей проектной документации. Для установления содержания этих изменений риск должен быть выражен через конкретные технико-технологические характеристики объекта или процесса, т.е. требуется получить математическую модель прогнозирования риска. Подобные модели строят с использованием принципа декомпозиции, согласно которому сложный объект или процесс делят на операции, а операции – на элементарные действия. Такой подход вызван тем, что только на уровне элементарного действия (или элементарного узла машины) риск может быть выражен через соответствующие технические характеристики изучаемой системы. Однако при этом необходимо обязательно принять какую-либо модель реализации риска и уточнить его вид. Как наиболее нежелательный вид реализации риска может быть принят несчастный случай (НС). Для многих процессов типичная последовательность событий, ведущих к НС, включает: появление травмоопасной ситуации (ПТС) ® нахождение человека в опасной зоне (НОЗ) ® попадание травмирующего фактора (ПТФ) ® отказ средств защиты (ОСЗ). Таким образом, риск R ij (Д) на уровне действия (Д) определяется как

R ij (Д) = P ij (ПТС) " P ij (НОЗ) " P ij (ПТФ) " P ij (ОСЗ), (1.4)

где P ij (ПТС), P ij (НОЗ), P ij (ПТФ), P ij (ОСЗ) - вероятности соответственно ПТС, НОЗ, ПТФ, ОСЗ. Именно эти вероятности во многих случаях удается выразить через технико-технологические характеристики изучаемого объекта или процесса.

Если предположить, что исследуемый процесс состоит из n операций, а каждая операция из m i действий, то с учетом независимости событий, связанных с воздействием опасных факторов на человека в разных действиях и при разных операциях получаем

R i (О) = , (1.5)

R(П) = , (1.6)

где R i (O) - риск, возникающий при выполнении i -й операции; m i – число действий в i -й операции; R(П) – риск, относящийся к процессу в целом; n – число операций, из которых состоит изучаемый процесс.

Реальные технологические процессы характеризуются повторяющимися циклами, например, изготовление деталей, кормление животных, техническое обслуживание машин. Поэтому расчеты риска делаются на один цикл. Если же в течение единицы времени (таковой может быть час, смена или даже год) выполняется N циклов, то величина риска будет

R = 1 - N . (1.7)

В предположении, что число циклов N в формуле (1.7) относится к одному году, величина R будет представлять годовой индивидуальный риск. Его величина должна быть не более 1"10 -6 . Если это условие не выполняется, то в проект должны быть внесены необходимые усовершенствования.

Расчеты рисков могут быть выполнены и по отдельным опасным и вредным факторам. В частности, риск R(ИИ) раковых заболеваний при действии ионизирующих излучений (ИИ ) и при принятии беспороговой концепции действия этих излучений на организм может быть оценен как

R(ИИ) = k " H, (1.8)

где k – коэффициент пропорциональности равный 1,25"10 -2 ; H – эквивалентная поглощенная доза, Зв.

При действии повышенного шума возникает риск R(L A) стойкой утраты слуховой чувствительности. Он зависит от продолжительности воздействия повышенного шума и его уровня L A , дБА. Для времени воздействия шума, соответствующем пяти годам, получено выражение

R(L A) = (197,7 – 4,87"L A + 0.03"L )/100 (1.9)

Риск R(a экв ) сосудистых расстройств при воздействии локальной вибрации, передающейся на руки человека, согласно ИСО 5349 равен

R(a экв) = / 95, (1.10)

где а экв(8) – эквивалентное корректированное значение виброускорения при длительности воздействия локальной вибрации в течение смены – 8 ч; Т – продолжительностью работы в виброопасных условиях, лет. Выражение (1.10) не может применяться, если значения Т лежат вне диапазона (1-25) лет, а значения R(a экв) – (0,10-0,50).

Риск землетрясений может быть определен в соответствии с моделью

P(N,t) = (l"t) N exp(-lt/N!), (1.11)

где P(N,t) – вероятность возникновения N землетрясений в течение временного интервала t ; l - среднее число землетрясений в единицу времени, получаемое по данным статистики.

Риск эпидемического заболевания R э (t) приближенно оценивается по выражению

R э (t) = (Q + 1) / { Q}, (1.12)

где Q – численность контингента здоровых людей, в который попадает заболевший человек, a - коэффициент пропорциональности, устанавливаемый для каждого вида болезнетворных микробов и условий распространения эпидемии; t – момент времени от начала развития эпидемии.

Классификация опасностей . Номенклатура опасностей меняется в ходе научно-технического развития, которое нередко порождает неизвестные ранее опасности. По природе происхождения опасности делят на техногенные, антропогенные, социальные, природные; по локализации – на связанные с литосферой, гидросферой, атмосферой и космосом. По вызываемым последствиям опасности могут быть связаны с заболеваниями, гибелью и травмами людей и животных, гибелью и заболеваниями растений, пожарами, авариями, наводнениями, засухами и т.п. В зависимости от вида деятельности опасности могут быть производственными, дорожно-транспортными, бытовыми, спортивными, военными. По характеру воздействия опасности делят на пассивные и активные. Пассивные опасности отличаются тем, что их активизирует сам человек за счет своей энергии – торчащие гвозди, другие острые, колющие предметы, неровности поверхностей, крутые подъемы, уклоны, незащищенные перепады по высоте. Активные опасности воздействуют на людей самостоятельно – ударная волна, световое излучение ядерного взрыва, шумы высокого уровня, ионизирующие излучения и др.

По времени проявления отрицательных последствий опасности могут быть импульсивного действия (неблагоприятные последствия проявляются немедленно) и кумулятивного действия (неблагоприятные последствия накапливаются в организме, приводя его в конечном итоге в патологическое состояние). Импульсивное действие характерно для электрического тока, ударных шумов. Кумулятивное действие характерно для ионизирующих излучений, повышенного шума, недостаточной освещенности и ряда других опасностей. В зависимости от уровня или интенсивности одна и та же по наименованию опасность может обладать и кумулятивным и импульсивным действием на организм.

С учетом материальной сущности (материальной природы носителей опасности) они могут быть разделены на физические, механические, химические, биологические.

Номенклатура или перечень опасностей могут быть общими, отраслевыми, местными, т.е. относится к одному какому-либо объекту или даже одному рабочему месту. Весьма подробную номенклатуру опасностей составил О.Н. Русак (1996). В неё, в частности, вошли: автомобиль, алкоголь, анормальные температуры воздуха и воды, вулканы, искры, качка, котел, метеориты, огонь, оружие, пестициды, повышенные уровни излучений, скользкая поверхность, снегопад, шум, физические перегрузки, эмоциональный стресс, ядовитые вещества и др.

В Системе стандартов безопасности труда (ССБТ) под опасностями понимаются опасные и вредные производственные факторы (ОВПФ). ОПФ – это факторы, которые ведут к травмам, ВПФ – к заболеваемости (при условии воздействия на работника).

Все ОВПФ согласно ГОСТ 12.0.003 делят на четыре группы: физические, химические, биологические и психофизиологические. Физические ОВПФ включают: движущиеся машины и механизмы; подвижные незащищенные элементы оборудования (валы, передачи, муфты и т.п.); передвигающиеся изделия, заготовки, материалы, разрушающиеся конструкции, обрушивающиеся горные породы (или водные массы), качка; повышенная запыленность, загазованность воздуха; повышенные уровни шумов, вибраций, излучений, ультра- и инфразвука, яркости света; повышенная или пониженная температура, относительная влажность и подвижность воздуха, барометрическое давление; повышенное значение напряжения в электрических цепях, которые могут замыкаться через тело человека; острые кромки, заусенцы на поверхностях оборудования, заготовок и инструмента; расположение рабочих мест на высоте.

Химические ОВПФ включают токсические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные вредные вещества, а также вещества, влияющие на репродуктивную функцию.

К биологическим ОВПФ относят патогенные микроорганизмы (бактерии, вирусы, риккетсии, спирохеты, грибы, простейшие) и продукты их жизнедеятельности, а также опасные и вредные макроорганизмы и растения.

Психофизиологические ОВПФ подразделяют на физические перегрузки (динамические, измеряемые в Дж, и статические, измеряемые в H"с) и нервно-психические перегрузки (умственное перенапряжение, перенапряжение анализаторов, монотонность труда, эмоциональные перегрузки).

Важно подчеркнуть, что ОВПФ возникают в том случае, если какие-либо факторы условий труда (или факторы рабочей среды) отклоняются от требований действующих стандартов, норм и правил в неблагоприятную для человека сторону.

Опасность – одно из центральных понятий безопасности жинедеятельности (БЖД). Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики (параметры), несоответствующие условиям жизнедеятельности человека. Можно сказать, что опасность – это риск неблагоприятного воздействия.

Практика свидетельствует, что абсолютная безопасность недостижима. Стремление к абсолютной безопасности часто вступает в антагонистические противоречия с законами техносферы.

В сентябре 1990 г. в г. Кельне состоялся первый Всемирный конгресс по безопасности жизнедеятельности человека как научной дисциплине. Девиз конгресса: «Жизнь в безопасности». Участники конгресса постоянно оперировали понятием «риск».

Возможны следующие определения риска:

Различают опасности реальные и потенциальные. В качестве аксиомы принимаются, что любая деятельность человека потенциально опасна. Реализация потенциальной опасности происходит через причины и приводит к нежелательным последствиям.

Сейчас перед специалистами ставится задача – не исключение до нуля безопасности (что в принципе невозможно). А достижение заранее заданной величины риска реализации опасности. При этом сопоставлять затраты и получаемую от снижения риска выгоду. Во многих западных странах для более объективной оценки риска и получаемых при этом затрат и выгод, вводят финансовую меру человеческой жизни. Заметим, что такой подход имеет противников, их довод – человеческая жизнь свята, бесценна и какие-то финансовые оценки недопустимы. Тем не менее, по зарубежным исследованиям, человеческая жизнь оценивается, что позволяет более объективно рассчитывать ставки страховых тарифов при страховании и обосновывать суммы выплат.

Поскольку абсолютная безопасность (нулевой риск) невозможна, современный мир пришел к концепции приемлемого (допустимого) риска. Суть концепции заключается в стремлении к такой безопасности, которую принимает общество в данное время. При этом учитывается уровень технического развития, экономические, социальные, политические и др. возможности. Приемлемый риск – это компромисс между уровнем безопасности и возможностями ее достижения. Это можно рассмотреть в следующей ситуации. После крупной аварии на Чернобыльской АЭС, правительство СССР решило повысить надежность всех ядерных реакторов. Средства были взяты из госбюджета и, следовательно, уменьшилось финансирование социальных программ здравоохранения, образования и культуры, что в свою очередь привело к увеличение социально-экономического риска. Поэтому следует всесторонне оценивать ситуацию и находить компромисс – между затратами и величиной риска.

Переход к «риску» дает дополнительные возможности повышения безопасности техносферы. К техническим, организационным, административным добавляются и экономические методы управления риском (страхование, денежные компенсации ущерба, платежи за риск и др.). Есть здравый смысл в том, чтобы законодательно ввести квоты за риск. При этом возникает проблема расчета риска: статистический, вероятностный, моделирование, экспертных оценок, социологических опросов и др. Все эти методы дают приблизительную оценку, поэтому целесообразно создавать базы и банки данных по рискам в условиях предприятий, регионов и т.д.

Практические задачи

Задача 1. В таблице 1 приведен ряд профессий по степени индивидуального риска фатального исхода в год. Используя данные табл.1 методом экспертных оценок охарактеризуйте вашу настоящую деятельность и условия вашей будущей работы.

Таблица 1. Классификация профессиональной безопасности


После обсуждения письменно сформулируйте свою оценку.

Для решения следующих задач используйте формулу определения индивидуального риска

где Р – индивидуальный риск (травмы, гибели, болезни и пр.);

Н – количество реализации опасности с нежелательными последст-виями за определенный период времени (день, год и т.д.);

Н – общее число участников (людей, приборов и пр.), на которых распространяется опасность.

Пример решения задачи по формуле (1).

Условие. Ежегодно неестественной смертью гибнет 250 тыс. человек. Определить индивидуальный риск гибели жителя страны при населении в 150 млн. человек.

Решение.

Р ж = 2,5*105 /1,5*10 8 =1,7.10 -3

Или будет 0,0017. Иначе можно сказать, что ежегодно примерно 17 человек 10000 погибает неестественной смертью. Если пофантазировать и предположить, что срок биологической жизни человека равен 1000 лет, то по нашим данным оказывается, что уже через 588 лет (1:0,0017) вероятность гибели человека неестественной смертью близка к 1 (или 100%).

Задача 2. Опасность гибели человека на производстве реализуется в год 7 тыс. раз. Определить индивидуальный риск погибших на производстве при условии, что всего работающих 60 млн. человек. Сравните полученный результат с вашей экспертной оценкой из задачи 1.

Задача 3. Определить риск погибших в дорожно-транспортном происшествии (ДТП), если известно, что ежегодно гибнет в ДТП 40 тыс. человек при населении 150 млн. человек.

Прямой ответ на вопрос, как рассчитывать риски, дают методы теории надежности. Эти методы основываются на объединении блок-схем сложных технических устройств и теории вероятностей, при этом учитывается человеческий фактор. Смысл риска может быть различным:

1) для каждой опасной связи в эргатической системе, т. е. системе, одним из элементов которой является человек, индивидуальный риск для i - го человека от j - й опасности есть годовая частота доли реализации опасности:

где nj -- количество пострадавших от j-го вида опасности, чел.;

Nj -- количество подвергшихся j -му виду опасности, чел.;

Ф -- время, за которое произошли события, год;

Среди других возможных методов оценки риска следует упомянуть матрицы риска, деревья причин, деревья событий и др.

В качестве иллюстрации перечислю лишь некоторые наиболее употребительные концепции риска и соответствующие показатели, широко обсуждаемые в последнее время: страховой риск, профессиональный риск, индивидуальный риск, коллективный или групповой риск, потенциальный территориальный риск, социальный риск, ожидаемый ущерб, коэффициент риска, индекс риска, классы условий труда по степени вредности и опасности, классы профессионального риска предприятий, категории доказанности риска и т. д.

В этом обилии концепций проявляется тенденция к возможно более тонкой дифференциации понятий и показателей риска.

Риск R можно описать как обычное произведение частоты опасного события Pопас.соб на тяжесть последствия Sпослед: R = Pопас.собSпослед.

Концепция тяжести (серьезности) последствия в определенном смысле может включать и ущерб данного последствия, выраженный в денежном эквиваленте.

Индивидуальный риск дифференцируется по характеру или тяжести поражения. Например, различают индивидуальный риск общего травматизма и риск травматизма с летальным исходом, причем каждый из этих видов риска дополнительно дифференцируется по отраслям экономики и т. д.

Показатель индивидуального риска наиболее часто используется при анализе рисков благодаря простоте и наглядности данной концепции. Приведем примеры расчета индивидуального риска.

Пример 1 . Определим риск Rпр гибели человека на производстве в нашей стране за 1 год, если известно, что ежегодно погибает около n = 7 тыс. человек, а численность работающих составляет примерно N = 70 млн человек:

Пример 2 . Ежегодно в России вследствие различных опасностей неестественной смертью погибает около 500 тыс. человек. Принимая численность населения страны равной 145 млн человек, определим риск гибели Rстр жителя страны от опасностей:

Пример 3 . Определим, используя данные предыдущих примеров, риск Rд попадания в фатальный несчастный случай, связанный с ДТП, если ежегодно погибает в этих происшествиях 35 тыс. человек:

Риск смерти в различных отраслях промышленности варьирует в очень широких пределах. От 110-2 на человека в год при производстве горчичного газа до 110-6…110-5 в швейной и обувной промышленности. Если же взять все отрасли промышленности, то средний риск смерти от профессиональной деятельности практически не изменился за последние 50-60 лет и составляет в настоящее время около 610-4 на человека в год. Это значит, что ежегодно из 1 млн работающих в разных отраслях 600 умирают за счет воздействия факторов производственной деятельности.

Таким образом, оставшийся практически неизменным в течение продолжительного времени уровень риска, обусловленный суммой производственных факторов, несмотря на расширение производства, можно рассматривать как социально приемлемый. Иначе говоря, на данном этапе общество может мириться с уровнем риска 610-4 на человека в год, учитывая пользу, которую оно извлекает от производственной деятельности. Приведенные выше значения соответствуют риску смерти от болезней в возрасте 30 лет, то есть когда он минимален.

Что же касается риска смерти, обусловленного внутренней средой обитания, то есть в результате различного вида заболеваний и старения, то он составляет в среднем на планете 110-2 на человека в год. Это значит, что из 1 млн человек, включающих все возрастные группы, ежегодно умирает от болезней и старости 10 тыс. Следует отметить, что риск смерти от злокачественных новообразований различных органов и тканей составляет 210-3 на человека в год, а ведущим является риск смерти от сердечно-сосудистых заболеваний, который равен 510-3.

В процессе жизнедеятельности человек подвержен воздействию факторов естественной среды обитания. К ним относятся землетрясения, наводнения, ураганы, грозы и т. д. Они являются причиной смерти 10 человек из 10 млн ежегодно. Таким образом, риск смерти, обусловленный естественной средой обитания, составляет примерно 110-6 на человека в год.

Коллективный, или групповой, риск простым образом связан с индивидуальным риском: то есть коллективный риск для группы людей равен индивидуальному риску (для одного человека), умноженному на число N людей в группе.

Пример 4 . Индивидуальный риск летального исхода при курении (одна пачка в день) составляет 3,610-3 1/год. Необходимо найти коллективный риск летального исхода при курении в стране с населением 145 млн человек, если доля курящих составляет 0,4 всего населения. Согласно определению коллективного риска, для этой группы людей имеем:

Rкол = 0,41451063,610-3 210103,

то есть более 210 тыс. человек может ежегодно умирать от рака легких, вызванного курением.

Для характеристики условий труда (факторов производственной среды, тяжести и напряженности трудового процесса), не отвечающих нормативным требованиям, целесообразно ввести понятие производственного риска (не путать с профессиональным риском, который определяется отношением финансовых показателей возмещения вреда и фонда зарплаты за определенный период).

Для упрощения можно учитывать наличие хотя бы одного вредного или опасного производственного фактора, не соответствующего требованиям нормативных документов. Наличие такого фактора может способствовать возникновению производственно обусловленного заболевания, привести со временем к профзаболеванию, стать предпосылкой для общих заболеваний либо спровоцировать несчастный случай на производстве.

Пример 5. По данным официальной статистики, в 2003 г. в России в промышленности, в строительстве, на транспорте и на предприятиях связи в условиях, не отвечающих требованиям санитарно-гигиенических норм, было занято 2,4 млн человек (n). Общая численность работающих в этих отраслях (тоже по статистическим данным) составляла 10,3 млн человек (Nраб). Производственный риск в 2003 г. в соответствии с этими данными равнялся

Rпр = n/Nраб = 2,4106/(10,3106) = 0,23.

Заметим, что Rпр = 0, если все рабочие места соответствуют нормативным условиям труда, и Rпр = 1, если ни одно рабочее место не удовлетворяет санитарно-гигиеническим нормам хотя бы по одному параметру.

Потенциальный территориальный риск -- это частота реализации поражающих факторов аварии, катастрофы, экологического бедствия в рассматриваемой точке территории.

Распределение потенциального территориального риска для данного опасного события напоминает топографическую карту, на которой с помощью изолиний и соответствующих цифр показаны максимальные значения частоты смертельного поражения человека за один год для каждой точки площадки объекта и прилегающей территории. Частота или риск смертельного поражения человека определяется при условии его постоянного местонахождения в данной точке.

Такие распределения потенциального территориального риска широко используются при анализе чрезвычайных ситуаций и проектировании мероприятий по их предотвращению. В случае взрывов и выбросов при авариях такие распределения риска должны включать как сценарии аварии с одинаковой массой выброса по всем направлениям ветра, так и зону поражения для отдельного сценария при заданном (предпочтительном) направлении ветра.

Пример 6 . Эпицентр взрыва имеет радиус r0 = 2,3 м -- это зона 100%-го поражения. Предполагая изотропность взрыва и нормальное распределение поражающих факторов, необходимо найти радиусы изолиний для значений потенциального территориального риска 10-3 1/год и 10-6 1/год. Нормальное распределение R(r) потенциального территориального риска как функции от расстояния до эпицентра взрыва имеет вид

где e = 2,718 -- основание натурального логарифма. Вычисление коэффициента дает: = 0,04 1/м2. Подставляя значения заданных территориальных рисков при двух неизвестных радиусах изолиний, находим r1 и r2: R1 = 10-3 = r1 = 8,7 м, R2 = 10-6 = r2 = 12,2 м. Таким образом, в радиусе 9 м от эпицентра вероятность поражения человека остается очень высокой.

Социальный риск характеризует тяжесть или катастрофичность последствий реализации опасного события. Известный специалист в области безопасности и теории рисков Б. Маршалл определяет социальный риск как «зависимость риска (частоты возникновения) событий, состоящих в поражении определенного числа людей, подвергаемых поражающим воздействиям определенного вида при реализации определенных опасностей, от этого числа людей; социальный риск характеризует масштаб катастрофичности опасности». Часто для анализа социального риска используются методы теории вероятностей, так как социальный риск представляет собой дискретное распределение вероятности опасного события по числу пострадавших N.

Ожидаемый ущерб -- это математическое ожидание величины ущерба при возникновении опасного события за определенный период времени.

Ожидаемый ущерб обычно выражается в денежном эквиваленте и чаще всего учитывает ущерб материального имущества. Он подлежит обязательному страхованию, так как включает не только ущерб на производственном объекте, но и возможный экологический ущерб. В любой организации осуществляется также обязательное социальное страхование от несчастных случаев на производстве.

Ожидаемый ущерб, как и социальный риск, -- нетривиальная характеристика опасного события с точки зрения теории вероятностей, допускающая тонкую дифференциацию при анализе причин и последствий.

Ущерб для человека может быть разнообразным: риск гибели, риск травмы, риск болезни и т.д. Для сравнения любых видов опасности определяют риск летального исхода от них rijлет. Тогда ущерб от реализации опасности будет:

x r i.j = rijлетxo,

где Хo -- стоимость человеческой жизни.

При ri.jлет = 1 имеем Хrij = Хo. Т. е. ущерб, связанный с гибелью человека, есть стоимость человеческой жизни, и значит, риск -- категория экономическая. Такой подход вызывает возражения определенного круга лиц, которые утверждают, что человеческая жизнь свята и не подлежит денежной оценке.

Однако на практике с неизбежностью возникает необходимость в такой оценке именно в целях безопасности людей, если вопрос ставится так: «Сколько надо израсходовать средств, чтобы спасти человеческую жизнь?» По зарубежным исследованиям человеческая жизнь оценивается от 650 тыс. до 7 млн долларов США.

Задача для расчета риска

  • 1,5 минуты занятий альпинизмом соответствует величине индивидуального риска летального исхода 1?10-6 год. Определить годовое количество погибших альпинистов, если за последние 3 года их выезжало в горы 40 тыс. чел., при этом затрачено непосредственно на восхождение каждым альпинистом по 2,5 сут
  • 1,5 мин = 0,025 час
  • 2,5 мин = 60 час
  • 40000:3?60 = 8?105 чел/час
  • 8?105:0,025?1?10-6=32 чел

© 2024
art4soul.ru - Преступления, наркотики, финансирование, наказание, заключение, порча